作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

基于局部高斯加权融合的图像质量评价

丰明坤1,2,赵生妹1,孙丽慧2,施祥2   

  1. (1.南京邮电大学 信号处理与传输研究院,南京 210003; 2.浙江科技学院 信息与电子工程学院,杭州 310023)
  • 收稿日期:2015-08-10 出版日期:2016-08-15 发布日期:2016-08-15
  • 作者简介:丰明坤(1978-),男,博士研究生,主研方向为计算机视觉;赵生妹,教授、博士生导师;孙丽慧,副教授;施祥,讲师。
  • 基金资助:
    国家自然科学基金资助项目(61475075,61271238);教育部高等学校博士学科点专项科研基金资助项目(20123223110003);江苏省普通高校研究生科研创新计划基金资助项目(CXZZ012_0467);江苏省高校自然科学研究基金资助项目(11KJA510002)。

Image Quality Assessment Based on Local Gaussian Weighted Fusion

FENG Mingkun  1,2,ZHAO Shengmei  1,SUN Lihui  2,SHI Xiang  2   

  1. (1.Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunication, Nanjing 210003,China; 2.School of Information and Electronic Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China)
  • Received:2015-08-10 Online:2016-08-15 Published:2016-08-15

摘要: 针对图像质量的局部评价融合问题,基于结构相似度(SSIM)评价算法,研究各种类型滤波器加权因子、滤波器窗口尺度及滤波器标准差参数对SSIM算法性能的影响。基于参数优化的高斯滤波器加权因子,改进峰值信噪比(PSNR)和奇异值分解(M_SVD)2种图像质量客观评价算法 ,通过优化的高斯权重对图像子块进行局部评价,在融合局部评价结果的基础上获得总体评价结果。实验结果表明,改进PSNR算法的预测斯皮尔曼等级相关系数、皮尔逊相关系数和均方根误差评价指标分别提高了3.78%,2.40%和2.02%,改进M_SVD算法的对应指标分别提升了 1.78%,0.67%和4.99%,具有较高的评价稳定性和实时性。

关键词: 计算机视觉, 图像质量评价, 图像滤波器, 高斯加权, 结构相似度

Abstract: Aiming at the local assessment fusion problem of image quality,the effect of different filters along with their weighting factor,window size and standard deviation on the performance of Structural Similarity(SSIM) algorithm is studied in the paper.Two algorithms named Peak Signal to Noise Ratio(PSNR) and Mean Singular Value Decomposition(M_SVD) for objective image quality assessment are improved based on optimized parameters of Gaussian filter.Overall evaluation results are achieved by assessing local blocks with Gaussian weight and fusing local assessment.Experimental results show that the Spearman Rankorder Correlation Coefficient(SROCC),Pearson Correlation Coefficient(CC) and Root Mean Square Error (RMSE) of the improved PSNR algorithm are enhanced by 3.78%,2.40% and 2.02% respectively.The above indexes are improved by 1.78%,0.67% and 4.99% respectively for the M_SVD algorithm.The two improved algorithms hold higher assessment tability and real-time performance.

Key words: computer vision, image quality assessment, image filter, Gaussian weighting, Structural Similarity(SSIM)

中图分类号: