1 |
YI F, JEONG O, MOON I, et al. Deep learning integral imaging for three-dimensional visualization, object detection, and segmentation. Optics and Lasers in Engineering, 2021, 146(3): 106695- 106702.
|
2 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
3 |
KIM C J, LEE M J, HWANG K H, et al. End-to-end deep learning-based autonomous driving control for high-speed environment. The Journal of Supercomputing, 2022, 78(2): 1961- 1982.
doi: 10.1007/s11227-021-03929-8
|
4 |
LORENTE P J N, MILLER L, ROSIQUE F, et al. End-to-end deep neural network architectures for speed and steering wheel angle prediction in autonomous driving. Electronics, 2021, 10(11): 1266- 1272.
doi: 10.3390/electronics10111266
|
5 |
XUE Y, JU Z. Multiple pedestrian tracking under first-person perspective using deep neural network and social force optimization. Optik, 2021, 240(6): 81- 92.
|
6 |
GAO H, WANG W, YANG C, et al. Traffic signal image detection technology based on YOLO. Journal of Physics: Conference Series, 2021, 61(1): 12- 21.
|
7 |
NIU H C, HU X B, LI H. Improved YOLOv5 network-based object detection for anti-intrusion of gantry crane[C]//Proceedings of the 2nd International Conference on Control, Robotics and Intelligent System. New York, USA: ACM, 2021: 147-152.
|
8 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence. Washington D. C., USA: IEEE Press, 2016: 1137-1149.
|
9 |
兰玉彬, 赵德楠, 张彦斐, 等. 生态无人农场模式探索及发展展望. 农业工程学报, 2021, 37(9): 312- 327.
URL
|
|
LAN Y B, ZHAO D N, ZHANG Y F, et al. Exploration and development prospect of eco-unmanned farm modes. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 312- 327.
URL
|
10 |
王斯佳. 基于智能项圈的畜牧健康诊断算法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
WANG S J. Research on animal husbandry health diagnosis algorithm based on smart collar[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
|
11 |
张磊, 许静, 田在, 等. 牧区智能数羊器系统的设计与实现. 通信电源技术, 2017, 34(4): 165- 166.
URL
|
|
ZHANG L, XU J, TIAN Z, et al. Research and implementation of intelligent counting sheep system in pastoral areas. Telecom Power Technology, 2017, 34(4): 165- 166.
URL
|
12 |
TASSINARI P, BOVO M, BENNI S, et al. A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Computers and Electronics in Agriculture, 2021, 182(7): 30- 38.
|
13 |
WU D, WU Q, YIN X, et al. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosystems Engineering, 2020, 189(11): 150- 163.
|
14 |
ACHOUR B, BELKADI M, FILALI I, et al. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on convolutional neural networks. Biosystems Engineering, 2020, 198(7): 31- 49.
|
15 |
MA L Z, CHEN Y, ZHANG J L. Vehicle and pedestrian detection based on improved YOLOv4-tiny model. Journal of Physics: Conference Series, 2021, 1920(1): 34- 43.
|
16 |
HUANG B Q, LIN H P, HU Z J, et al. An improved YOLOv3-tiny algorithm for vehicle detection in natural scenes. IET Cyber-Systems and Robotics, 2021, 32(3): 256- 264.
|
17 |
GUO C, LV X L, ZHANG Y, et al. Improved YOLOv4-tiny network for real-time electronic component detection. Scientific Reports, 2021, 11(1): 44- 56.
doi: 10.1038/s41598-020-78528-3
|
18 |
LEE G, HONG S, CHO D. Self-supervised feature enhancement networks for small object detection in noisy images. IEEE Signal Processing Letters, 2021, 28(7): 1026- 1030.
|
19 |
MA A L, WANG J J, ZHONG Y F, et al. FactSeg: foreground activation-driven small object semantic segmentation in large-scale remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(12): 1- 16.
|
20 |
|
21 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 1571-1580.
|
22 |
|
23 |
宋怀波, 江梅, 王云飞, 等. 融合卷积神经网络与视觉注意机制的苹果幼果高效检测方法. 农业工程学报, 2021, 37(9): 297- 303.
URL
|
|
SONG H B, JIANG M, WANG Y F, et al. Efficient detection method for young apples based on the fusion of convolutional neural network and visual attention mechanism. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 297- 303.
URL
|
24 |
|
25 |
|