[1] WANG L W, ZHANG Y, FENG J F.On the Euclidean distance of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1334-1339. [2] MAESSCHALCK R D, JOUAN-RIMBAUD D, MASSART D L.The mahalanobis distance[J].Chemometrics and Intelligent Laboratory Systems, 2000, 50(1):1-18. [3] CHENG D, GONG Y H, ZHOU S P, et al.Person re-identification by multi-channel parts-based CNN with improved Triplet Loss function[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1335-1344. [4] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [5] SUN Y F, CHENG C M, ZHANG Y H, et al.Circle Loss:a unified perspective of pair similarity optimization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6397-6406. [6] SUN Y, ZHENG L, YANG Y, et al.Beyond part models:person retrieval with refined part pooling(and a strong convolutional baseline)[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:480-496. [7] WANG G S, YUAN Y F, CHEN X, et al.Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia.New York, USA:ACM Press, 2018:274-282. [8] FU Y, WANG X Y, WEI Y C, et al.STA:spatial-temporal attention for large-scale video-based person re-identification[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:8287-8294. [9] CHEN T L, DING S J, XIE J Y, et al.ABD-net:attentive but diverse person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8350-8360. [10] ZHENG Z D, YANG X D, YU Z D, et al.Joint discriminative and generative learning for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2133-2142. [11] LOPER M, MAHMOOD N, ROMERO J, et al.SMPL:a skinned multi-person linear model[J].ACM Transactions on Graphics, 2015, 34(6):248. [12] PAVLAKOS G, CHOUTAS V, GHORBANI N, et al.Expressive body capture:3D hands, face, and body from a single image[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10967-10977. [13] CHEN Y J, TU Z G, KANG D, et al.Model-based 3D hand reconstruction via self-supervised learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:10446-10455. [14] KOLOTOUROS N, PAVLAKOS G, BLACK M, et al.Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:2252-2261. [15] KANAZAWA A, BLACK M J, JACOBS D W, et al.End-to-end recovery of human shape and pose[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7122-7131. [16] ZENG W, OUYANG W L, LUO P, et al.3D human mesh regression with dense correspondence[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:7052-7061. [17] ZHENG Z D, YANG Y.Parameter-efficient person re-identification in the 3D space[EB/OL].[2021-10-05].https://arxiv.org/abs/2006.04569. [18] ALLDIECK T, MAGNOR M, XU W P, et al.Video based reconstruction of 3D people models[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8387-8397. [19] ZHANG H, WU C R, ZHANG Z Y, et al.ResNeSt:split-attention networks[EB/OL].[2021-10-05].https://arxiv.org/pdf/2004.08955.pdf. [20] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [21] ZHENG L, SHEN L Y, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [22] GOU M R, KARANAM S, LIU W Q, et al.DukeMTMC4ReID:a large-scale multi-camera person re-identification dataset[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1425-1434. [23] WEI L H, ZHANG S L, GAO W, et al.Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:79-88. [24] ZHOU J H, SU B, WU Y.Online joint multi-metric adaptation from frequent sharing-subset mining for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2906-2915. [25] ZHU Z H, JIANG X Y, ZHENG F, et al.Viewpoint-aware loss with angular regularization for person re-identification[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):13114-13121. [26] WANG Y, SUN Y B, LIU Z W, et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics, 2019, 38(5):146. [27] CHARLES R Q, HAO S, MO K C, et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:77-85. |