参考文献
[1]潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报(社会科学版),2011,29(4):1-5.
[2]Pan W T.A New Fruit Fly Optimization Algorithm:Taking the Financial Distress Model as an Example[J].Knowledge-based Systems,2012,26(2):69-74.
[3]Niu Jinwei,Zhong Weimin,Liang Yi,et al.Fruit Fly Optimization Algorithm Based on Differential Evolution and Its Application on Gasification Process Operation Optimization[J].Knowledge-based Systems,2015,88(C):253-263.
[4]吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-20,25.
[5]程慧,刘成忠.基于混沌映射的混合果蝇优化算法[J].计算机工程,2013,39(5):218-221.
[6]韩俊英,刘成忠.自适应混沌果蝇优化算法[J].计算机应用,2013,33(5):1313-1316.
[7]Li Chunquan,Xu Shaoping,Li Wen,et al.A Novel Modified Fly Optimization Algorithm for Designing the Self-tuning Proportional Integral Derivative Con-troller[J].Journal of Convergence Information Tech-nology,2012,7(16):69-77.
[8]杨琼,俞立峰,陈小小.一种基于果蝇优化方法的连续查询攻击算法[J].四川大学学报(自然科学版),2014,51(4):725-730.
[9]Pan Quanke,Sang Hongyan,Duan Junhua,et al.An Improved Fruit Fly Optimization Algorithm for Continuous Function Optimization Problems[J].Knowledge-based Systems,2014,62(5):69-83.
[10]韩俊英,刘成忠.反向认知的高效果蝇优化算法[J].计算机工程,2013,39(11):223-225,239.
[11]Zheng Xiaolong,Wang Ling,Wang Shengyao.A Novel Fruit Fly Optimization Algorithm for the Semiconductor Final Testing Scheduling Problem[J].Knowledge-based Systems,2013,57(2):95-103.
[12]韩俊英,刘成忠,王联国.动态双子群协同进化果蝇优化算法[J].模式识别与人工智能,2013,26(11):1057-1067.
[13]Wang Lin,Shi Yuanlong,Liu Shan.An Improved Fruit Fly Optimization Algorithm and Its Application to Joint Replenishment Problems[J].Expert Systems with App-lications,2015,42(9):4310-4323.
[14]Marko M,Najdan V,Milica P,et al.Chaotic Fruit Fly Optimization Algorithm[J].Knowledge-based Systems,2015,89(C):446-458.
[15]Yuan Xiaofang,Dai Xiangshan,Zhao Jingyi,et al.On a Novel Multi-swarm Fruit Fly Optimization Algorithm and Its Application[J].Applied Mathematics and Com-putation,2014,233(3):260-271.
编辑刘冰 |