参考文献
[1]KENNEDY J,EBERHART R.Particle Swarm Optimization[C]//Proceedings of the 4th IEEE International Cofference on Neural Netwoks.Washington D.C.,USA:IEEE Press,1995:1942-1948.
[2]RATNAWEERA A,HALGAMUGE S K,WATSONH C.Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
[3]LIANG J J,QIN A K,SUGANTHAN P N,et al.Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
[4]KENNEDY J,MENDES R.Population Structure and Particle Swarm Performance[C]//Proceedings of the Evolutionary Computation Congress.Washington D.C.,USA:IEEE Press,2002:1671-1676.
[5]CUI Zhihua,CAI Xingjuan.Integral Particle Swarm Optimization with Dispersed Accelerator Information[J].Fundamenta Informaticae,2009,95(4):427-447.
(下转第281页)
(上接第250页)
[6]蔡星娟,崔志华,曾建潮,等.自适应PID控制微粒群算法[C]//第二十六届中国控制会议论文集.北京:[出版者不详],2007.
[7]ZHANG J,YANG S.A Novel PSO Algorithm Based on an Incremental PID Controlled Search Strategy[J].Soft Computing,2016,20(3):991-1005.
[8]于海生.计算机控制技术[M].北京:机械工业出版社,2007.
[9]ZHANG Wei,LIU Jiao,FAN Lübin,et al.Control Strategy PSO[J].Applied Soft Computing,2016,38(3):75-86.
[10]MENDES R,KENNEDY J,NEVES J.The Fully Informed Particle Swarm:Simpler,Maybe Better[J].IEEE Transactions on Evolutionary Computation,2004,8(3):204-210.
[11]韩璞,孟丽,王彪,等.粒子群算法中粒子轨迹特性研究[J].计算机仿真,2015,32(12):235-240.
[12]张玮,王化奎.粒子群算法稳定性的参数选择策略分析[J].系统仿真学报,2009,21(14):4339-4344,4350.
[13]李宁,孙德宝,邹彤,等.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060.
[14]SHI Yuhui,EBERHART R.Parameter Selection in Particle Swarm Optimization[C]//Proceedings of International Conference on Evolutionary Programming.Berlin,Germany:Springer,1998:591-600.
[15]LIM W H,ISA M N A.Adaptive Division of Labor Particle Swarm Optimization[J].Expert Systems with Applications,2015,42(14):5887-5903.
[16]王永贵,林琳,刘宪国.基于CGA和PSO的双种群混合算法[J].计算机工程,2014,40(7):148-153.
编辑顾逸斐 |