[1]LI Z,FANG C,GU Y,et al.Fire detection system based on wireless multi-sensor information fusion[J].Journal of Data Acquisition and Processing,2014,29(6):964-969.
[2]NOORDIN N H,NEY H W.Localization in wireless sensor network for forest fire detection[C]//Proceedings of IEEE International Symposium on Telecommunication Tech-nologies.Washington D.C.,USA:IEEE Press,2017:87-90.
[3]何晨阳,周孟然,闫鹏程,等.图像处理与BP神经网络在矿井火灾隐患识别中的应用[J].桂林理工大学学报,2016,36(3):615-618.
[4]傅天驹.基于深度学习的林火图像识别算法及实现[D].北京:北京林业大学,2016.
[5]刘国满,盛敬,李志和.基于模糊C均值聚类法检测发动机舱火灾[J].消防科学与技术,2017,36(5):721-724.
[6]DUONG H D,TINH D T.An efficient method for vision-based fire detection using SVM classification[C]//Proceedings of International Conference on Soft Computing and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:190-195.
[7]杜明本.基于视频监控的煤矿井下火灾识别算法研究[D].太原:太原科技大学,2016.
[8]POOBALAN K,LIEW S C.Fire detection based on color filters and bag-of-features classification[EB/OL].[2018-01-02].https://www.researchgate.net/publica tion/286770812_Fire_Detection_Based_on_Color_Filters_and_Bag-of-_Features_Classification.
[9]PU Y R,CHEN Y J,LEE S H.Fire recognition based on correlation of segmentations by image processing techniques[J].Machine Vision and Application,2015,26(7/8):1-8.
[10]JIANG A P,BAI D D,ZHU B Y.A segmentation algorithm research of forest fire image based on YCbCr and improved local fractal dimension[J].Applied Mechanics and Materials,2015,742:247-251.
[11]KUO J Y,LAI T Y,FANJIANG Y Y,et al.A behavior-based flame detection method for a real-time video surveillance system[J].Journal of the Chinese Institute of Engineers,2015,38(7):947-958.
[12]JI Q G,ZHE-MING L U,CHI R.Real-time multi-feature based fire flame detection in video[J].IET Image Processing,2017,11(1):31-37.
[13]INCE I F,YILDIRIM M E,SALMAN Y B,et al.Fast video fire detection using luminous smoke and textured flame features[J].KSII Transactions on Internet and Information Systems,2016,10:6048-6069.
[14]CHO M Y,HOANG T T.feature selection and parameters optimization of SVM using particle swarm optimization for fault classification in power distribution systems[J].Computational Intelligence and Neuroscience,2017(3):1-9.
[15]许卫强,陈国顺,牛刚,等.基于SVM分类的指控系统网络健康评估研究[J].计算机工程,2017,43(7):316-321.
[16]王友卫,朱建明,凤丽洲,等.基于近郊区和远郊区的果蝇优化新算法[J].计算机工程,2017,43(2):210-214.
[17]王钧.基于变步长果蝇优化算法的Richards模型参数估计[J].计算机工程与设计,2017,38(9):2402-2406.
[18]段锁林.基于改进的PSO优化SVM火灾火焰识别算法研究[J].计算机测量与控制,2016,24(4):202-205.
[19]张英杰,李亮,张英豪,等.一种基于双子群的改进粒子群优化算法[J].湖南大学学报(自然科学版),2011,38(1):84-88. |