[1] YUAN J W, LIU H L, ONG Y S, et al. Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(2):379-391. [2] 郑丽萍,赵玉娟,费选.基于改进MOEA/D的车联网通信资源分配算法[J].计算机工程, 2023, 49(5):191-197. ZHENG L P, ZHAO Y J, FEI X. Communication resource allocation algorithm based on improved MOEA/D in Internet of vehicles[J]. Computer Engineering, 2023, 49(5):191-197.(in Chinese) [3] 蔡昕烨,马中雨,张峰,等.基于自适应分解的多任务协作型昂贵多目标优化算法[J].计算机学报, 2021, 44(9):1934-1948. CAI X Y, MA Z Y, ZHANG F, et al. Adaptive multitask with multipopulation-based cooperative search for expensive multiobjective optimization problems[J]. Chinese Journal of Computers, 2021, 44(9):1934-1948.(in Chinese) [4] TAN B X, MA H, MEI Y, et al. Evolutionary multi-objective optimization for Web service location allocation problem[J]. IEEE Transactions on Services Computing, 2021, 14(2):458-471. [5] 占德志,张国富,苏兆品,等.动态可靠性约束的多阶段测试资源分配研究[J].计算机工程, 2021, 47(2):246-253, 260. ZHAN D Z, ZHANG G F, SU Z P, et al. Research on multi-stage testing resource allocation with dynamic reliability constraints[J]. Computer Engineering, 2021, 47(2):246-253, 260.(in Chinese) [6] GONG M G, WANG Z, ZHU Z X, et al. A similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication system[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6):878-897. [7] 李智勇,黄滔,陈少淼,等.约束优化进化算法综述[J].软件学报, 2017, 28(6):1529-1546. LI Z Y, HUANG T, CHEN S M, et al. Overview of constrained optimization evolutionary algorithms[J]. Journal of Software, 2017, 28(6):1529-1546.(in Chinese) [8] RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3):284-294. [9] MOHAMED A W, SABRY H Z. Constrained optimization based on modified differential evolution algorithm[J]. Information Sciences, 2012, 194:171-208. [10] FAN Z, LI W J, CAI X Y, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23(23):12491-12510. [11] MING M J, TRIVEDI A, WANG R, et al. A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4):739-753. [12] LI K, CHEN R Z, FU G T, et al. Two-archive evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2):303-315. [13] TIAN Y, ZHANG T, XIAO J H, et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1):102-116. [14] YANG Y K, LIU J C, TAN S B, et al. A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio[J]. Applied Soft Computing, 2019, 80(C):42-56. [15] YU K J, WANG X, WANG Z L. Constrained optimization based on improved teaching-learning-based optimization algorithm[J]. Information Sciences, 2016, 352/353:61-78. [16] TIAN Y, ZHANG Y J, SU Y S, et al. Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(9):9559-9572. [17] NING W K, GUO B L, YAN Y Y, et al. Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm[J]. Engineering Optimization, 2017, 49(10):1645-1664. [18] ZHOU Y L, ZHU M, WANG J H, et al. Tri-goal evolution framework for constrained many-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019:1-14. [19] COELLO C A C, CHRISTIANSEN A D. MOSES:a multiobjective optimization tool for engineering design[J]. Engineering Optimization, 1999, 31(3):337-368. [20] WANG Y, WANG B C, LI H X, et al. Incorporating objective function information into the feasibility rule for constrained evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2016, 46(12):2938-2952. [21] HE C, CHENG R, TIAN Y, et al. Paired offspring generation for constrained large-scale multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3):448-462. [22] 毕晓君,张磊,肖婧.基于双种群的约束多目标优化算法[J].计算机研究与发展, 2015, 52(12):2813-2823. BI X J, ZHANG L, XIAO J. Constrained multi-objective optimization algorithm based on dual populations[J]. Journal of Computer Research and Development, 2015, 52(12):2813-2823.(in Chinese) [23] JIAO R W, LI C H, WANG R, et al. Constrained optimisation by solving equivalent dynamic loosely-constrained multiobjective optimisation problem[J]. International Journal of Bio-Inspired Computation, 2019, 13(2):86. [24] FAN Z, LI W J, CAI X Y, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44:665-679. [25] LIU Z Z, WANG Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):870-884. [26] LIU Z Z, WANG B C, TANG K. Handling constrained multiobjective optimization problems via bidirectional coevolution[J]. IEEE Transactions on Cybernetics, 2022, 52(10):10163-10176. [27] TIAN Y, ZHENG X T, ZHANG X Y, et al. Efficient large-scale multiobjective optimization based on a competitive swarm optimizer[J]. IEEE Transactions on Cybernetics, 2020, 50(8):3696-3708. [28] MA H P, WEI H Y, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560:68-91. [29] DONG J, GONG W Y, MING F, et al. A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization[J]. Expert Systems with Applications, 2022, 195:116499. [30] ZHANG Q F, ZHOU A M, ZHAO S Z, et al. Multiobjective optimization test instances for the CEC 2009 special session and competition[EB/OL].[2023-05-10]. https://www.researchgate.net/profile/Ponnuthurai-Suganthan/publication/265432807_Multiobjective_optimization_Test_Instances_for_the_CEC_2009_Special_Session_and_Competition/links/54b7d9940cf2c27adc473433/Multiobjective-optimization-Test-Instances-for-the-CEC-2009-Special-Session-and-Competition.pdf. [31] BOSMAN P A N, THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):174-188. [32] BADER J, ZITZLER E. HypE:an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1):45-76. [33] DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1994, 9:1-34. [34] DEB K, GOYAL M. A combined Genetic Adaptive Search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26:30-45. [35] PRICE K, STORN R M, LAMPINEN J A. Differential evolution:a practical approach to global optimization[M]. Berlin, Germany:Springer Science&Business Media, 2006. |