作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于节点策略学习行为的社交网络合作促进机制

杨文潮 a,王际科 b,崔光海 a   

  1. (鲁东大学 a.信息与电气工程学院;b.科技处,山东 烟台 264025)
  • 收稿日期:2016-10-20 出版日期:2017-11-15 发布日期:2017-11-15
  • 作者简介:杨文潮(1969—),男,高级实验师、硕士,主研方向为人工智能;王际科,讲师、硕士;崔光海,讲师、博士。
  • 基金资助:
    山东省高校科技发展计划项目(2013YD01031);山东省自然科学基金(ZR2010GM013)。

Cooperation Promotion Mechanism of Social Networks Based on Nodes Strategy Learning Behaviors

YANG Wenchao a,WANG Jike b,CUI Guanghai a   

  1. (a.School of Information and Electrical Engineering; b.Department of Science and Technology, Ludong University,Yantai,Shandong 264025,China)
  • Received:2016-10-20 Online:2017-11-15 Published:2017-11-15

摘要: 已有节点合作激励机制通常使用节点历史交易信息,信息的存储和处理会带来较大开销,且可能存在恶意节点反馈的虚假信息。针对上述问题,提出一种基于节点自身属性调整的合作激励机制。节点依据自己在策略学习过程中是失败者还是成功者来对自己发起的交易数量进行调整。实验结果表明,网络中合作节点比例较不使用机制时有显著提高,且当存在节点策略选择扰动时,合作节点比例在网络演化均衡态保持了较好的稳定性。

关键词: 社交网络, 节点合作, 激励机制, 空间演化博弈论, 策略学习

Abstract: Proposed node cooperation incentive mechanisms are always based on historical transaction information of nodes.Besides the considerable costs of information storage and process,there also exists fraudulent transaction information provided by malicious nodes.Aiming at these questions,it establishes a cooperation incentive mechanism based on adjustments of node property.Nodes adjust the number of their performed transactions depending on being a winner or loser in the learning process of strategies.Simulation results show that the fraction of cooperators significantly increases compared to the original scenario in which the mechanism is not used,and the cooperator fraction has good stability in the equilibrium state when disturbances exist in node strategy selection process.

Key words: social network, node cooperation, incentive mechanism, spatial evolutionary game theory, strategy learning

中图分类号: