[1] 邵云飞, 宋友, 王宝会. 基于社交网络图节点度的神经网络个性化传播算法研究[J]. 计算机科学, 2023, 50(4):16-21. SHAO Y F, SONG Y, WANG B H. Study on degree of node based personalized propagation of neural predictions for social networks[J]. Computer Science, 2023, 50(4):16-21.(in Chinese) [2] CAN U, ALATAS B. A new direction in social network analysis:online social network analysis problems and applications[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 535:122372. [3] OLANREWAJU A S T, HOSSAIN M A, WHITESIDE N, et al. Social media and entrepreneurship research:a literature review[J]. International Journal of Information Management, 2020, 50:90-110. [4] 龙增艳, 陈志刚, 徐成林. 基于用户交互的社交网络好友推荐算法[J]. 计算机工程, 2019, 45(3):132-137. LONG Z Y, CHEN Z G, XU C L. Social network friend recommendation algorithm based on user interaction[J]. Computer Engineering, 2019, 45(3):132-137.(in Chinese) [5] 黄鑫, 李赟, 熊瑾煜. 基于信息传播节点集的CTDN节点分类算法[J]. 计算机工程, 2021, 47(6):188-196. HUANG X, LI Y, XIONG J Y. Node classification algorithm based on information propagation node set for CTDN[J]. Computer Engineering, 2021, 47(6):188-196.(in Chinese) [6] ZHU J, YAN Y J, ZHAO L X, et al. Beyond homophily in graph neural networks:current limitations and effective designs[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:7793-7804. [7] 张陶, 于炯, 廖彬, 等. 基于图嵌入与支持向量机的社交网络节点分类方法[J]. 计算机应用研究, 2021, 38(9):2646-2650, 2661. ZHANG T, YU J, LIAO B, et al. Node classification method in social network based on graph embedding and support vector machine[J]. Application Research of Computers, 2021, 38(9):2646-2650, 2661.(in Chinese) [8] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2014:701-710. [9] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2023-03-11]. https://arxiv.org/abs/1301.3781. [10] GROVER A, LESKOVEC J. Node2Vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2016:855-864. [11] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA:ACM Press, 2017:1263-1272. [12] NG A. Sparse autoencoder[EB/OL].[2023-03-11]. https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf. [13] 李盼, 解庆, 李琳, 等. 知识增强的图神经网络序列推荐模型[J]. 计算机工程, 2023, 49(2):70-80. LI P, XIE Q, LI L, et al. Knowledge-enhanced graph neural network model for sequential recommendation[J]. Computer Engineering, 2023, 49(2):70-80.(in Chinese) [14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2023-03-11]. https://arxiv.org/pdf/1609.02907.pdf. [15] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2023-03-11]. https://arxiv.org/pdf/1710.10903.pdf. [16] HE D X, LIANG C D, LIU H X, et al. Block modeling-guided graph convolutional neural networks[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2022:4022-4029. [17] CHUANG C Y, ROBINSON J, LIN Y C, et al. Debiased contrastive learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:8765-8775 [18] YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:5812-5823. [19] XU J, TANG H Y, REN Y Z, et al. Multi-level feature learning for contrastive multi-view clustering[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2022:16051-16060. [20] DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1):19-67. [21] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[EB/OL].[2023-03-11]. https://arxiv.org/pdf/1809.10341.pdf. [22] SUN F Y, HOFFMAN J, VERMA V, et al. InfoGraph:unsupervised and semi-supervised graph-level representation learning via mutual information maximization[EB/OL].[2023-03-11]. https://arxiv.org/pdf/1908.01000.pdf. [23] THAKOOR S, TALLEC C, AZAR M G, et al. Bootstrapped representation learning on graphs[EB/OL].[2023-03-11]. https://arxiv.org/pdf/2207.05969.pdf. [24] VERLEYSEN M, FRANÇOIS D. The curse of dimensionality in data mining and time series prediction[C]//Proceedings of the 8th Biennial Meeting of the International Work-Conference on Artificial Neural Networks. Berlin, Germany:Springer, 2005:758-770. [25] GUO K, ZHOU K, HU X, et al. Orthogonal graph neural networks[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2022:3996-4004. [26] ABU-EL-HAIJA S, PEROZZI B, KAPOOR A, et al. MixHop:higher-order graph convolutional architectures via sparsified neighborhood mixing[EB/OL].[2023-03-11]. https://arxiv.org/pdf/1905.00067.pdf. [27] ZHAO T, LIU Y, NEVES L, et al. Data augmentation for graph neural networks[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2021:11015-11023. [28] WANG X, ZHU M Q, BO D Y, et al. AM-GCN:adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA:ACM Press, 2020:1243-1253. |