[1] PAMUNGKAS E W, BASILE V, PATTI V.Stance classification for rumour analysis in Twitter:exploiting affective information and conversation structure[EB/OL].(2019-01-07)[2020-12-05].https://arxiv.org/pdf/1901.01911.pdf. [2] MENDOZA M, POBLETE B, CASTILLO C.Twitter under crisis:can we trust what we RT?[C]//Proceedings of the 1st Workshop on Social Media Analytics.New York, USA:ACM Press, 2010:71-79. [3] FANG B, JIA Y, HAN Y, et al.A survey of social network and information dissemination analysis[J].Chinese Science Bulletin, 2014, 59(32):4163-4172. [4] ZUBIAGA A, AKER A, BONTCHEVA K, et al.Detection and resolution of rumours in social media:a survey[J].ACM Computing Surveys, 2017, 51(2):1-36. [5] PROCTER R, VIS F, VOSS A.Reading the riots on Twitter:methodological innovation for the analysis of big data[J].International Journal of Social Research Methodology, 2013, 16(3):197-214. [6] BAI N, WANG Z, MENG F.A stochastic attention CNN model for rumor stance classification[J].IEEE Access, 2020, 8:80771-80778. [7] REHUREK R, SOJKA P.Software framework for topic modelling with large corpora[C]//Proceedings of LREC 2010 Workshop on New Challenges for NLP Frameworks.Washington D.C., USA:IEEE Press, 2004:1-10. [8] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2020-12-05].https://arxiv.org/pdf/1301.3781.pdf. [9] QAZVINIAN V, ROSENGREN E, RADEV D, et al.Rumor has it:identifying misinformation in microblogs[C]//Proceedings of 2011 Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2011:1589-1599. [10] ZENG L, STARBIRD K, SPIRO E S.# unconfirmed:classifying rumor stance in crisis-related social media messages[C]//Proceedings of 2016 International AAAI Conference on Web and Social Media.Palo Alto, USA:AAAI Press, 2016:1-10. [11] VEYSEH A P B, EBRAHIMI J, DOU D, et al.A temporal attentional model for rumor stance classification[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:2335-2338. [12] AUGENSTEIN I, ROCKTÄSCHEL T, VLACHOS A, et al.Stance detection with bidirectional conditional encoding[EB/OL].(2016-09-26)[2020-12-05].https://arxiv.org/pdf/1606.05464.pdf. [13] LUKASIK M, SRIJITH P, VU D, et al.Hawkes processes for continuous time sequence classification:an application to rumour stance classification in twitter[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2016:393-398. [14] LUKASIK M, BONTCHEVA K, COHN T, et al.Using Gaussian processes for rumour stance classification in social media[J].ACM Transactions on Information Systems, 2019, 37(2):1-24. [15] ZUBIAGA A, KOCHKINA E, LIAKATA M, et al.Stance classification in rumours as a sequential task exploiting the tree structure of social media conversations[EB/OL].(2016-09-28)[2020-12-05].https://arxiv.org/pdf/1609. 09028.pdf. [16] KOCHKINA E, LIAKATA M, AUGENSTEIN I.Turing at SemEval-2017 task8:sequential approach to rumour stance classification with branch-LSTM[C]//Proceedings of SemEval'17.[S.l.]:ACL, 2017:475-483. [17] RAJENDRAN G, POORNACHANDRAN P, CHITTURI B.Deep learning model on stance classification[C]//Proceedings of 2017 International Conference on Advances in Computing, Communications and Informatics.Washington D.C., USA:IEEE Press, 2017:2407-2409. [18] KINGMA D P, WELLING M.Auto-encoding variational Bayes[EB/OL].(2013-12-20)[2020-12-05].http://export.arxiv.org/pdf/1312.6114. [19] HOGAN J W, ROY J, KORKONTZELOU C.Handling drop-out in longitudinal studies[J].Statistics in Medicine, 2004, 23(9):1455-1497. [20] SUNDERMEYER M, SCHLÜTER R, NEY H.LSTM neural networks for language modeling[C]//Proceedings of the 13th Annual Conference of the International Speech Communication Association.Washington D.C., USA:IEEE Press, 2012:1-10. [21] VELIKOVI P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].(2017-10-30)[2020-12-05].https://arxiv.org/pdf/1710.10903.pdf. |