| 1 |  ZHANG W X ,  LI X ,  DENG Y , et al.  A survey on aspect-based sentiment analysis: tasks, methods, and challenges. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (11): 11019- 11038.  doi: 10.1109/TKDE.2022.3230975
 | 
																													
																						| 2 | 谭翠萍.  文本细粒度情感分析研究综述. 大学图书馆学报, 2022, 40 (4): 85-99, 119. | 
																													
																						|  |  TAN C .  Review of fine-grained sentiment analysis based on text. Journal of Academic Libraries, 2022, 40 (4): 85-99, 119. | 
																													
																						| 3 |  PENG H Y ,  XU L ,  BING L D , et al.  Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (5): 8600- 8607.  doi: 10.1609/aaai.v34i05.6383
 | 
																													
																						| 4 | MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 13543-13551. | 
																													
																						| 5 | XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2020: 2339-2349. | 
																													
																						| 6 | WU Z, YING C C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, USA: Association for Computational Linguistics, 2020: 2576-2585. | 
																													
																						| 7 | 徐康, 李霏, 姬东鸿.  结合依存图卷积与文本片段搜索的方面情感三元组抽取. 计算机工程, 2023, 49 (4): 61- 67.  URL
 | 
																													
																						|  |  XU K ,  LI F ,  JI D H .  Aspect sentiment triple extraction by combining dependency graph convolution and text span search. Computer Engineering, 2023, 49 (4): 61- 67.  URL
 | 
																													
																						| 8 | XU L, CHIA Y K, BING L D. Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2021: 4755-4766. | 
																													
																						| 9 | CHEN Y Q, CHEN K M, SUN X, et al. A span-level bidirectional network for aspect sentiment triplet extraction[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 4300-4309. | 
																													
																						| 10 | WANG Y, YU B, ZHANG Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2010.13415v1 . | 
																													
																						| 11 | ZHANG R H, LIU Q, FAN A X, et al. Minimize exposure bias of seq2seq models in joint entity and relation extraction[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2009.07503 . | 
																													
																						| 12 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4171-4186. | 
																													
																						| 13 |  | 
																													
																						| 14 | SU J, MURTADHA A, PAN S, et al. Global pointer: novel efficient span-based approach for named entity recognition[EB/OL]. [2023-08-10]. https://arxiv.org/pdf/2208.03054 . | 
																													
																						| 15 |  | 
																													
																						| 16 | LEE K, HE L H, LEWIS M, et al. End-to-end neural conference resolution[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: association for Computational Linguistics, 2017: 1-10. | 
																													
																						| 17 |  | 
																													
																						| 18 | ZHANG Z H, LI X Q, LI Y X, et al. Neural noise embedding for end-to-end speech enhancement with conditional layer normalization[C]//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D. C., USA: IEEE Press, 2021: 7113-7117. | 
																													
																						| 19 | XIONG R, YANG Y, HE D, et al. On layer normalization in the transformer architecture[C]//Proceedings of International Conference on Machine Learning. [S.l.]: PMLR, 2020: 10524-10533. | 
																													
																						| 20 | LEE D, TIAN Z, XUE L, et al. Enhancing content preservation in text style transfer using reverse attention and conditional layer normalization[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2108.00449 . | 
																													
																						| 21 |  | 
																													
																						| 22 |  DR A U R .  Binary cross entropy with deep learning technique for Image classification. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9 (4): 5393- 5397.  doi: 10.30534/ijatcse/2020/175942020
 | 
																													
																						| 23 |  JOHNSON J M ,  KHOSHGOFTAAR T M .  Survey on deep learning with class imbalance. Journal of Big Data, 2019, 6 (1): 27.  doi: 10.1186/s40537-019-0192-5
 | 
																													
																						| 24 |  WANG L ,  HAN M ,  LI X J , et al.  Review of classification methods on unbalanced data sets. IEEE Access, 2021, 9, 64606- 64628.  doi: 10.1109/ACCESS.2021.3074243
 | 
																													
																						| 25 |  | 
																													
																						| 26 |  CHEN S W ,  WANG Y ,  LIU J , et al.  Bidirectional machine reading comprehension for aspect sentiment triplet extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (14): 12666- 12674.  doi: 10.1609/aaai.v35i14.17500
 | 
																													
																						| 27 |  | 
																													
																						| 28 |  | 
																													
																						| 29 | STANDLEY T, ZAMIR A, CHEN D, et al. Which tasks should be learned together in multi-task learning?[C]//Proceedings of International Conference on Machine Learning. [S.l]: PMLR, 2020: 9120-9132. | 
																													
																						| 30 |  ZHANG Y ,  YANG Q .  A survey on multi-task learning. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (12): 5586- 5609.  doi: 10.1109/TKDE.2021.3070203
 |