| 1 |
李佳. 5G+4K超高清视频产业的发展前景探讨. 中文科技期刊数据库(全文版)经济管理, 2023 (2): 4.
|
|
LI J . Discussion on the development prospect of 5G+4K ultra-HD video industry. Economic Management (Full-Text Version), 2023 (2): 4.
|
| 2 |
BROSS B , WANG Y K , YE Y , et al. Overview of the Versatile Video Coding (VVC) standard and its applications. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (10): 3736- 3764.
doi: 10.1109/TCSVT.2021.3101953
|
| 3 |
朱秀昌, 唐贵进. H.266/VVC: 新一代通用视频编码国际标准. 南京邮电大学学报(自然科学版), 2021, 41 (2): 1- 11.
|
|
ZHU X C , TANG G J . H.266/VVC: versatile video coding international standard. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41 (2): 1- 11.
|
| 4 |
LI Z G , ZHENG J H , ZHU Z J , et al. Weighted guided image filtering. IEEE Transactions on Image Processing, 2015, 24 (1): 120- 129.
doi: 10.1109/TIP.2014.2371234
|
| 5 |
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 27th Asilomar Conference on Signals, Systems & Computers. Washington D.C., USA: IEEE Press, 2020: 1398-1402.
|
| 6 |
KARUNARATNE P V, SEGALL C A, KATSAGGELOS A K. A rate-distortion optimal video pre-processing algorithm[C]//Proceedings of the 2001 International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2001: 481-484.
|
| 7 |
LEE J . Automatic prefilter control by video encoder statistics. Electronics Letters, 2002, 38 (11): 503.
doi: 10.1049/el:20020361
|
| 8 |
JAIN C, SETHURAMAN S. A low-complexity, motion-robust, spatio-temporally adaptive video de-noiser with in-loop noise estimation[C]//Proceedings of the 15th IEEE International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2008: 557-560.
|
| 9 |
LU S P , ZHANG S H . Saliency-based fidelity adaptation preprocessing for video coding. Journal of Computer Science and Technology, 2011, 26 (1): 195- 202.
doi: 10.1007/s11390-011-9426-5
|
| 10 |
SHAW M Q , ALLEBACH J P , DELP E J . Color difference weighted adaptive residual preprocessing using perceptual modeling for video compression. Signal Processing: Image Communication, 2015, 39, 355- 368.
doi: 10.1016/j.image.2015.04.008
|
| 11 |
VANAM R, REZNIK Y A. Perceptual pre-processing filter for user-adaptive coding and delivery of visual information[C]//Proceedings of the Picture Coding Symposium (PCS). Washington D.C., USA: IEEE Press, 2013: 426-429.
|
| 12 |
VANAM R, KEROFSKY L J, REZNIK Y A. Perceptual pre-processing filter for adaptive video on demand content delivery[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2014: 2537-2541.
|
| 13 |
VIDAL E , STURMEL N , GUILLEMOT C , et al. New adaptive filters as perceptual preprocessing for rate-quality performance optimization of video coding. Signal Processing: Image Communication, 2017, 52, 124- 137.
doi: 10.1016/j.image.2016.12.003
|
| 14 |
XIANG G Q, JIA H Z, LIU J, et al. Adaptive perceptual preprocessing for video coding[C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Washington D.C., USA: IEEE Press, 2016: 2535-2538.
|
| 15 |
STERN M K , JOHNSON J H . Just noticeable difference. The Corsini Encyclopedia of Psychology, 2010, 5, 1- 2.
|
| 16 |
AHMED N , NATARAJAN T , RAO K R . Discrete cosine transform. IEEE Transactions on Computers, 1974, 23 (1): 90- 93.
|
| 17 |
BHAT M, THIESSE J M, LE CALLET P. HVS based perceptual pre-processing for video coding[C]//Proceedings of the 27th European Signal Processing Conference (EUSIPCO). Washington D.C., USA: IEEE Press, 2019: 1-5.
|
| 18 |
URVOY M , GOUDIA D , AUTRUSSEAU F . Perceptual DFT watermarking with improved detection and robustness to geometrical distortions. IEEE Transactions on Information Forensics and Security, 2014, 9 (7): 1108- 1119.
doi: 10.1109/TIFS.2014.2322497
|
| 19 |
GULERYUZ O G, CHOU P A, HOPPE H, et al. Sandwiched image compression: wrapping neural networks around a standard codec[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2021: 3757-3761.
|
| 20 |
|
| 21 |
TALEBI H , KELLY D , LUO X Y , et al. Better compression with deep pre-editing. IEEE Transactions on Image Processing, 2021, 30, 6673- 6685.
doi: 10.1109/TIP.2021.3096085
|
| 22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 23 |
|
| 24 |
CHADHA A, ANDREOPOULOS Y. Deep perceptual preprocessing for video coding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 14847-14856.
|
| 25 |
|
| 26 |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2472-2481.
|
| 27 |
|
| 28 |
|
| 29 |
|
| 30 |
LI J F, WEN Y, HE L H. SCconv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 6153-6162.
|
| 31 |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1874-1883.
|
| 32 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2017: 1122-1131.
|
| 33 |
|
| 34 |
|
| 35 |
|
| 36 |
|