[1] 苏衡, 周杰, 张志浩.超分辨率图像重建方法综述[J].自动化学报, 2013, 39(8):1202-1213. SU H, ZHOU J, ZHANG Z H.Survey of super-resolution image reconstruction methods[J].Acta Automatica Sinica, 2013, 39(8):1202-1213.(in Chinese) [2] GIORGETTI A, VARRELLA M, CHIANI M.Analysis and performance comparison of different cognitive radio algorithms[C]//Proceedings of the 2nd International Workshop on Cognitive Radio and Advanced Spectrum Management.Washington D.C., USA:IEEE Press, 2009:127-131. [3] IRANI M, PELEG S.Super resolution from image sequences[C]//Proceedings of the 10th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 1990:115-120. [4] KIM K I, KWON Y.Example-based learning for single-image super-resolution[C]//Proceedings of Joint Pattern Recognition Symposium.Berlin, Germany:Springer, 2008:456-465. [5] WANG S L, ZHANG L, LIANG Y, et al.Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:2216-2223. [6] JOSEPH P J, VASWANI K, THAZHUTHAVEETIL M J.Construction and use of linear regression models for processor performance analysis[C]//Proceedings of the 12th International Symposium on High-Performance Computer Architecture.Washington D.C., USA:IEEE Press, 2006:99-108. [7] LI Z, GUO J, XU W C, et al.Parameter extraction for equivalent circuit of common mode choke based on deep neural network, random forest tree and extreme gradient boosting algorithm[C]//Proceedings of Photonics & Electromagnetics Research Symposium.Washington D.C., USA:IEEE Press, 2019:2296-2304. [8] 连逸亚, 吴小俊.超深卷积神经网络的图像超分辨率重建研究[J].计算机工程, 2019, 45(1):217-220. LIAN Y Y, WU X J.Research on image super-resolution reconstruction of super deep convolutional neural network[J].Computer Engineering, 2019, 45(1):217-220.(in Chinese) [9] DONG C, LOY C C, HE K M, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [10] DONG C, LOY C C, TANG X O.Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:391-407. [11] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1646-1654. [12] GHIFARY M, KLEIJN W B, ZHANG M J, et al.Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:597-613. [13] MAO X, SHEN C, YANG Y B.Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J].Advances in Neural Information Processing Systems, 2016(29):2802-2810. [14] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:105-114. [15] LI J C, FANG F M, MEI K F, et al.Multi-scale residual network for image super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:527-542. [16] WINEY B, SHARP G, BUSSIÈRE M.A fast double template convolution isocenter evaluation algorithm with subpixel accuracy[J].Medical Physics, 2011, 38(1):223-227. [17] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [18] NIU B, WEN W L, REN W Q, et al.Single image super-resolution via a holistic attention network[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:191-207. [19] LI Y Y, LI Y L, GU Y F.Channel-wise spatial attention with spatiotemporal heterogeneous framework for action recognition[C]//Proceedings of the 6th International Conference on Computing and Artificial Intelligence.Berlin, Germany:Springer, 2020:334-338. [20] 张海涛, 张梦.引入通道注意力机制的SSD目标检测算法[J].计算机工程, 2020, 46(8):264-270. ZHANG H T, ZHANG M.SSD target detection algorithm with channel attention mechanism[J].Computer Engineering, 2020, 46(8):264-270.(in Chinese) [21] MUDIGERE D, NAUMOV M, SPISAK J, et al.Building recommender systems with PyTorch[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2020:3525-3526. [22] TIMOFTE R, AGUSTSSON E, GOOL L V, et al.NTIRE 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1110-1121. [23] SMITH D C.Super-resolution of text images through neighbor embedding[C]//Proceedings of the 13th IASTED International Conference on Signal and Image Processing.Calgary, Canada:ACTA Press, 2011:19-26. [24] 彭亚丽, 张鲁, 张钰, 等.基于深度反卷积神经网络的图像超分辨率算法[J].软件学报, 2018, 29(4):926-934. PENG Y L, ZHANG L, ZHANG Y, et al.Deep deconvolution neural network for image super-resolution[J].Journal of Software, 2018, 29(4):926-934.(in Chinese) [25] MARTIN D, FOWLKES C, TAL D, et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2001:416-423. [26] HUANG J B, SINGH A, AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:5197-5206. [27] FENG J, WANG Z W, ZHA M, et al.Flower recognition based on transfer learning and Adam deep learning optimization algorithm[C]//Proceedings of 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence.Washington D.C., USA:IEEE Press, 2019:598-604. [28] FANG Z, XU X X, LI X, et al.SPGD algorithm optimization based on Adam optimizer[C]//Proceedings of AOPC'20.Beijing, China:[s.n.], 2020:677-684. [29] HUYNH-THU Q, GHANBARI M.Scope of validity of PSNR in image/video quality assessment[J].Electronics Letters, 2008, 44(13):800-810. [30] LIU D, LI Y C, CHEN S J.No-reference remote sensing image quality assessment based on the region of interest and structural similarity[C]//Proceedings of the 2nd International Conference on Advances in Image Processing.Berlin, Germany:Springer, 2018:64-67. [31] KEYS R.Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6):1153-1160. [32] LAI W S, HUANG J B, AHUJA N, et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5835-5843. [33] AHN N, KANG B, SOHN K A.Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:256-272. [34] HUI Z, GAO X B, YANG Y C, et al.Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York, USA:ACM Press, 2019:2024-2032. [35] 胡晓辉, 张建国.基于改进卷积神经网络的图像超分辨率算法研究[J].计算机应用研究, 2020, 37(3):947-950, 956. HU X H, ZHANG J G.Research on image super-resolution algorithm based on improved convolutional neural network[J].Application Research of Computers, 2020, 37(3):947-950, 956.(in Chinese) |