| 1 |
蔡毅翔, 秦品乐, 曾建潮, 等. 针对大角度下视角差异的行人重识别方法研究. 计算机工程, 2024, 50 (5): 330- 341.
doi: 10.19678/j.issn.1000-3428.0067532
|
|
CAI Y X , QIN P L , ZENG J C , et al. Research on person re-identification method for large-angle viewpoint differences. Computer Engineering, 2024, 50 (5): 330- 341.
doi: 10.19678/j.issn.1000-3428.0067532
|
| 2 |
SUN Y F, CHENG C M, ZHANG Y H, et al. Circle Loss: a unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 6397-6406.
|
| 3 |
朱锦雷, 李艳凤, 陈后金, 等. 近邻优化跨域无监督行人重识别算法. 中国图象图形学报, 2023, 28 (11): 3471- 3484.
|
|
ZHU J L , LI Y F , CHEN H J , et al. Cross-domain unsupervised Re-ID algorithm based on neighbor adversarial and consistency loss. Journal of Image and Graphics, 2023, 28 (11): 3471- 3484.
|
| 4 |
VERMA A , SUBRAMANYAM A V , WANG Z , et al. Unsupervised domain adaptation for person re-identification via individual-preserving and environmental-switching cyclic generation. IEEE Transactions on Multimedia, 2023, 25, 364- 377.
doi: 10.1109/TMM.2021.3126404
|
| 5 |
GE Y X, CHEN D P, LI H S. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2001.01526.
|
| 6 |
WANG W H , ZHAO F , LIAO S C , et al. Attentive WaveBlock: complementarity-enhanced mutual networks for unsupervised domain adaptation in person re-identification and beyond. IEEE Transactions on Image Processing, 2022, 31, 1532- 1544.
doi: 10.1109/TIP.2022.3140614
|
| 7 |
ZHOU H , KONG J , JIANG M , et al. Heterogeneous dual network with feature consistency for domain adaptation person re-identification. International Journal of Machine Learning and Cybernetics, 2023, 14 (5): 1951- 1965.
doi: 10.1007/s13042-022-01739-9
|
| 8 |
ZHONG X , HAN X Y , JIA X M , et al. ICLR: instance credibility-based label refinement for label noisy person re-identification. Pattern Recognition, 2024, 148, 110168.
doi: 10.1016/j.patcog.2023.110168
|
| 9 |
余志敏. 复杂背景下的跨域行人重识别技术研究[D]. 长沙: 中南大学, 2022.
|
|
YU Z M. Research on cross-domain person re-identification with complex background[D]. Changsha: Central South University, 2022. (in Chinese)
|
| 10 |
ISOBE T, LI D, TIAN L, et al. Towards discriminative representation learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 8506-8516.
|
| 11 |
LUO C C , SONG C F , ZHANG Z X . Learning to adapt across dual discrepancy for cross-domain person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1963- 1980.
doi: 10.1109/TPAMI.2022.3167053
|
| 12 |
CHEN H, LAGADEC B, BREMOND F. Enhancing diversity in teacher-student networks via asymmetric branches for unsupervised person re-identification[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2021: 1-10.
|
| 13 |
|
| 14 |
|
| 15 |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7794-7803.
|
| 16 |
LI K Q , WU L , QI Q , et al. Beyond single reference for training: underwater image enhancement via comparative learning. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (6): 2561- 2576.
doi: 10.1109/TCSVT.2022.3225376
|
| 17 |
MA X , LV W Q , ZHAO M . A double stream person re-identification method based on attention mechanism and multi-scale feature fusion. IEEE Access, 2023, 11, 14612- 14620.
doi: 10.1109/ACCESS.2023.3243553
|
| 18 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1502.03167.
|
| 19 |
CHANG W G, YOU T, SEO S, et al. Domain-specific batch normalization for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 7346-7354.
|
| 20 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2818-2826.
|
| 21 |
|
| 22 |
ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 1116-1124.
|
| 23 |
ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 3774-3782.
|
| 24 |
WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 79-88.
|
| 25 |
ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 3652-3661.
|
| 26 |
LI S H , YUAN M K , CHEN J , et al. AdaDC: adaptive deep clustering for unsupervised domain adaptation in person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (6): 3825- 3838.
doi: 10.1109/TCSVT.2021.3118060
|
| 27 |
GU J Y, WANG K, LUO H, et al. MSINet: twins contrastive search of multi-scale interaction for object ReID[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 19243-19253.
|
| 28 |
FU Y, WEI Y C, WANG G S, et al. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6111-6120.
|
| 29 |
|
| 30 |
ZHENG K C , LAN C L , ZENG W J , et al. Exploiting sample uncertainty for domain adaptive person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 3538- 3546.
doi: 10.1609/aaai.v35i4.16468
|
| 31 |
GE Y X, ZHU F, CHEN D P, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object Re-ID[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2006.02713.
|
| 32 |
DAI Y X , LIU J , BAI Y , et al. Dual-refinement: joint label and feature refinement for unsupervised domain adaptive person re-identification. IEEE Transactions on Image Processing, 2021, 30, 7815- 7829.
doi: 10.1109/TIP.2021.3104169
|
| 33 |
ZHENG K C, LIU W, HE L X, et al. Group-aware label transfer for domain adaptive person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 5306-5315.
|
| 34 |
HAN J , LI Y L , WANG S J . Delving into probabilistic uncertainty for unsupervised domain adaptive person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (1): 790- 798.
doi: 10.1609/aaai.v36i1.19960
|
| 35 |
HE T , SHEN L Q , GUO Y C , et al. SECRET: self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (1): 879- 887.
doi: 10.1609/aaai.v36i1.19970
|
| 36 |
DONG W H , QU P S , LI B W . Dual pseudo label refinement for unsupervised domain adaptive person re-identification. IEEE Access, 2023, 11, 44402- 44412.
doi: 10.1109/ACCESS.2023.3272879
|
| 37 |
YANG Q Z, YU H X, WU A C, et al. Patch-based discriminative feature learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 3628-3637.
|
| 38 |
ZOU Y, YANG X D, YU Z D, et al. Joint disentangling and adaptation for cross-domain person re-identification[EB/OL].[2023-10-05]. https://arxiv.org/abs/2007.10315.
|
| 39 |
|