| 1 |
WANG X D , ZHENG Z D , HE Y , et al. Progressive local filter pruning for image retrieval acceleration. IEEE Transactions on Multimedia, 2023, 25, 9597- 9607.
|
| 2 |
YANG C C , LIN Z J , LAN Z Y , et al. Evolutionary channel pruning for real-time object detection. Knowledge-Based Systems, 2024, 287, 111432.
|
| 3 |
魏钰轩, 陈莹. 基于自适应层信息熵的卷积神经网络压缩. 电子学报, 2022, 50 (10): 2398- 2408.
|
|
WEI Y X , CHEN Y . Convolutional neural network compression based on adaptive layer entropy. Acta Electronica Sinica, 2022, 50 (10): 2398- 2408.
|
| 4 |
HAYASHI K, YAMAGUCHI T, SUGAWARA Y, et al. Einconv: exploring unexplored tensor network decompositions for convolutional neural networks[EB/OL]. [2024-04-05]. https://arxiv.org/abs/1908.04471.
|
| 5 |
LIU Z C , LUO W H , WU B Y , et al. Bi-Real Net: binarizing deep network towards real-network performance. International Journal of Computer Vision, 2020, 128 (1): 202- 219.
|
| 6 |
CUI B Y , LI Y M , ZHANG Z F . Joint structured pruning and dense knowledge distillation for efficient transformer model compression. Neurocomputing, 2021, 458, 56- 69.
|
| 7 |
郑香平, 梁循. 基于剪枝优化的深层胶囊网络. 计算机学报, 2022, 45 (7): 1557- 1570.
|
|
ZHENG X P , LIANG X . Deep capsule network based on pruning optimization. Chinese Journal of Computers, 2022, 45 (7): 1557- 1570.
|
| 8 |
LIU Y J , WU D K , ZHOU W J , et al. EACP: an effective automatic channel pruning for neural networks. Neurocomputing, 2023, 526, 131- 142.
|
| 9 |
程小辉, 李钰, 康燕萍. 基于中间图特征提取的卷积网络双标准剪枝. 计算机工程, 2023, 49 (3): 105- 112.
doi: 10.19678/j.issn.1000-3428.0064206
|
|
CHENG X H , LI Y , KANG Y P . Double standard pruning of convolution network based on feature extraction of intermediate graph. Computer Engineering, 2023, 49 (3): 105- 112.
doi: 10.19678/j.issn.1000-3428.0064206
|
| 10 |
刘奇, 陈莹. 正则化机制下多粒度神经网络剪枝方法研究. 电子学报, 2023, 51 (8): 2202- 2212.
|
|
LIU Q , CHEN Y . Research on multi-granularity neural network pruning method with regularization mechanism. Acta Electronica Sinica, 2023, 51 (8): 2202- 2212.
|
| 11 |
LIU Y X , GUO Y , GUO J X , et al. Conditional automated channel pruning for deep neural networks. IEEE Signal Processing Letters, 2021, 28, 1275- 1279.
|
| 12 |
LI B P, FAN Y W, PAN Z H, et al. Automatic channel pruning with hyper-parameter search and dynamic masking[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 2121-2129.
|
| 13 |
|
| 14 |
程点, 郑海斌, 陈晋音. 基于相似度感知的深度卷积神经网络剪枝方法. 小型微型计算机系统, 2024, 45 (11): 2656- 2662.
|
|
CHENG D , ZHENG H B , CHEN J Y . Similarity-aware pruning method for deep convolutional neural networks. Journal of Chinese Computer Systems, 2024, 45 (11): 2656- 2662.
|
| 15 |
|
| 16 |
HE Y H, LIN J, LIU Z J, et al. AMC: AutoML for model compression and acceleration on mobile devices[C]//Proceedings of ECCV'18. Berlin, Germany: Springer International Publishing, 2018: 815-832.
|
| 17 |
LIN M B, JI R R, ZHANG Y X, et al. Channel pruning via automatic structure search[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: International Joint Conferences on Artificial Intelligence Organization, 2020: 673-679.
|
| 18 |
LI J Q , LI H R , CHEN Y R , et al. ABCP: automatic blockwise and channelwise network pruning via joint search. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15 (3): 1560- 1573.
|
| 19 |
TROJOVSKÁ E , DEHGHANI M , TROJOVSKÝ P . Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access, 2022, 10, 49445- 49473.
|
| 20 |
|
| 21 |
|
| 22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 23 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 1-9.
|
| 24 |
HUANG Z H, WANG N Y. Data-driven sparse structure selection for deep neural networks[C]//Proceedings of ECCV'18. Berlin, Germany: Springer International Publishing, 2018: 317-334.
|
| 25 |
LIN S H, JI R R, YAN C Q, et al. Towards optimal structured CNN pruning via generative adversarial learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2790-2799.
|
| 26 |
HE Y, DING Y H, LIU P, et al. Learning filter pruning criteria for deep convolutional neural networks acceleration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 2009-2018.
|
| 27 |
LIN M B , CAO L J , LI S J , et al. Filter sketch for network pruning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (12): 7091- 7100.
|
| 28 |
ZHAO C L, NI B B, ZHANG J, et al. Variational convolutional neural network pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2775-2784.
|
| 29 |
YAN Y C, GUO R Z, LI C, et al. Channel pruning via multi-criteria based on weight dependency[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2021: 1-8.
|
| 30 |
HE Y, KANG G L, DONG X Y, et al. Soft filter pruning for accelerating deep convolutional neural networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence Organization, 2018: 2234-2240.
|
| 31 |
CHANG J F , LU Y , XUE P , et al. Automatic channel pruning via clustering and swarm intelligence optimization for CNN. Applied Intelligence, 2022, 52 (15): 17751- 17771.
|
| 32 |
时小虎, 袁宇平, 吕贵林, 等. 自动语音识别模型压缩算法综述. 吉林大学学报(理学版), 2024, 62 (1): 122- 131.
|
|
SHI X H , YUAN Y P , LÜ G L , et al. Compression algorithms for automatic speech recognition models: a survey. Journal of Jilin University (Science Edition), 2024, 62 (1): 122- 131.
|