| 1 |
LUO J H, WU J X, LIN W Y. ThiNet: a filter level pruning method for deep neural network compression[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 5068-5076.
|
| 2 |
JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2704-2713.
|
| 3 |
YU X Y, LIU T L, WANG X C, et al. On compressing deep models by low rank and sparse decomposition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 67-76.
|
| 4 |
|
| 5 |
PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 3962-3971.
|
| 6 |
ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL]. [2024-03-07]. https://arxiv.org/abs/1612.03928v3.
|
| 7 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
|
| 8 |
ZHOU B, LAPEDRIZA A, XIAO J, et al. Learning deep features for scene recognition using places database[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2014: 487-495.
|
| 9 |
SUN Y, CHEN Y, WANG X, et al. Deep learning face representation by joint identification-verification[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS'14). Cambridge, USA: MIT Press, 2014: 1988-1996.
|
| 10 |
LIU Y F, CAO J J, LI B, et al. Knowledge distillation via instance relationship graph[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 7089-7097.
|
| 11 |
MINAMI S, HIRAKAWA T, YAMASHITA T, et al. Knowledge transfer graph for deep collaborative learning[C]//Proceedings of ACCV'20. Berlin, Germany: Springer, 2021: 203-217.
|
| 12 |
ZHANG Z Y, SHU X B, YU B W, et al. Distilling knowledge from well-informed soft labels for neural relation extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 9620-9627.
|
| 13 |
KOJI T, KANJI T. Dark reciprocal-rank: teacher-to-student knowledge transfer from self-localization model to graph-convolutional neural network[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2021: 1846-1853.
|
| 14 |
|
| 15 |
ZHU Y S, ZHANG W, CHEN M Y, et al. DualDE: dually distilling knowledge graph embedding for faster and cheaper reasoning[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 1516-1524.
|
| 16 |
CHEN Y X, CHEN P G, LIU S, et al. Deep structured instance graph for distilling object detectors[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 4339-4348.
|
| 17 |
ZHOU S, WANG Y C, CHEN D F, et al. Distilling holistic knowledge with graph neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 10367-10376.
|
| 18 |
PENG B Y, JIN X, LI D S, et al. Correlation congruence for knowledge distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 5006-5015.
|
| 19 |
CHEN H T , WANG Y H , XU C , et al. Learning student networks via feature embedding. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 25- 35.
|
| 20 |
MA A J , YUEN P C , ZOU W W W , et al. Supervised spatio-temporal neighborhood topology learning for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23 (8): 1447- 1460.
|
| 21 |
|
| 22 |
CHENG G , HAN J W , LU X Q . Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 2017, 105 (10): 1865- 1883.
|
| 23 |
XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. [2023-10-14]. https://arxiv.org/abs/1708.07747.
|
| 24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 25 |
LINDERMAN G, RACHH M, HOSKINS J, et al. Efficient algorithms for t-distributed stochastic neighborhood embedding[EB/OL]. [2024-03-07]. https://arxiv.org/abs/1712.09005.
|
| 26 |
曹坪, 杨怀志, 薄一军, 等. 面向低质量裂缝图像的多知识蒸馏分类. 计算机工程, 2023, 49 (7): 204- 213.
doi: 10.19678/j.issn.1000-3428.0065323
|
|
CAO P , YANG H Z , BO Y J , et al. Multi-knowledge distillation classification for low-quality crack images. Computer Engineering, 2023, 49 (7): 204- 213.
doi: 10.19678/j.issn.1000-3428.0065323
|
| 27 |
刘静, 郑铜亚, 郝沁汾. 图知识蒸馏综述: 算法分类与应用分析. 软件学报, 2024, 35 (2): 675- 710.
|
|
LIU J , ZHENG T Y , HAO Q F . Survey on knowledge distillation with graph: algorithms classification and application analysis. Journal of Software, 2024, 35 (2): 675- 710.
|
| 28 |
李大湘, 南艺璇, 刘颖. 面向遥感图像场景分类的双知识蒸馏模型. 电子与信息学报, 2023, 45 (10): 3558- 3567.
|
|
LI D X , NAN Y X , LIU Y . A double knowledge distillation model for remote sensing image scene classification. Journal of Electronics & Information Technology, 2023, 45 (10): 3558- 3567.
|
| 29 |
赖轩, 曲延云, 谢源, 等. 基于拓扑一致性对抗互学习的知识蒸馏. 自动化学报, 2023, 49 (1): 102- 110.
|
|
LAI X , QU Y Y , XIE Y , et al. Topology-guided adversarial deep mutual learning for knowledge distillation. Acta Automatica Sinica, 2023, 49 (1): 102- 110.
|