| 1 |
杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述. 软件学报, 2024, 35 (1): 87- 117.
|
|
DU X Y , LIU M W , SHEN L W , et al. Survey on representation learning methods of knowledge graph for link prediction. Journal of Software, 2024, 35 (1): 87- 117.
|
| 2 |
刘伟, 谢璐钧, 张智慧, 等. 基于张量分解嵌入的时序知识图谱推理. 北京信息科技大学学报(自然科学版), 2024, 39 (1): 49- 54.
|
|
LIU W , XIE L J , ZHANG Z H , et al. Reasoning of temporal knowledge graphs based on tensor decomposition embedding. Journal of Beijing Information Science & Technology University (Science and Technology Edition), 2024, 39 (1): 49- 54.
|
| 3 |
|
| 4 |
马恒志, 钱育蓉, 冷洪勇, 等. 知识图谱嵌入研究进展综述. 计算机工程, 2025, 51 (2): 18- 34.
doi: 10.19678/j.issn.1000-3428.0068386
|
|
MA H Z , QIAN Y R , LENG H Y , et al. Review of research progress on knowledge graph embedding. Computer Engineering, 2025, 51 (2): 18- 34.
doi: 10.19678/j.issn.1000-3428.0068386
|
| 5 |
ZHANG Z Y, LIU X Q, ZHANG Y, et al. Pretrain-KGE: learning knowledge representation from pretrained language models[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, USA: ACL Press, 2020: 259-266.
|
| 6 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2024-03-07]. https://arxiv.org/abs/1810.04805v2.
|
| 7 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1-8.
|
| 8 |
SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of International Conference on Learning Representations. Washington D.C., USA: IEEE Press, 2019: 1-8.
|
| 9 |
LI R, ZHAO J, LI C, et al. HousE: knowledge graph embedding with householder parameterization[C]//Proceedings of International Conference on Machine Learning. Stroudsburg, USA: ACL Press, 2022: 13209-13224.
|
| 10 |
XIAO C Y, HE X N, CAO Y X. Knowledge graph embedding by normalizing flows[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 4756-4764.
|
| 11 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of International Conference on Machine Learning. Palo Alto, USA: AAAI Press, 2011: 4482-4584.
|
| 12 |
|
| 13 |
HAYASHI K , KISHIMOTO K , SHIMBO M . Binarized embeddings for fast, space-efficient knowledge graph completion. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (1): 141- 153.
|
| 14 |
BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: ACL Press, 2019: 5185-5194.
|
| 15 |
ZHANG S, TAY Y, YAO L, et al. Quaternion knowledge graph embeddings[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 3735-3745.
|
| 16 |
CAO Z S, XU Q Q, YANG Z Y, et al. Dual quaternion knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 6894-6902.
|
| 17 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 1-9.
|
| 18 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2021, 60 (6): 84- 90.
|
| 19 |
ZHANG Z L , LI Z F , LIU H , et al. Multi-scale dynamic convolutional network for knowledge graph embedding. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (5): 2335- 2347.
|
| 20 |
VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3009-3016.
|
| 21 |
FANG Y , LU W , LIU X D , et al. CircularE: a complex space circular correlation relational model for link prediction in knowledge graph embedding. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31, 3162- 3175.
|
| 22 |
JIANG D , WANG R G , XUE L X , et al. Multisource hierarchical neural network for knowledge graph embedding. Expert Systems with Applications, 2024, 237, 121446.
|
| 23 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web Conference. Berlin, Germany: Springer International Publishing, 2018: 593-607.
|
| 24 |
SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 3060-3067.
|
| 25 |
WU J K, SHI W T, CAO X Z, et al. DisenKGAT: knowledge graph embedding with disentangled graph attention network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 2140-2149.
|
| 26 |
|
| 27 |
LIANG S , SHAO J , ZHANG D Y , et al. DRGI: deep relational graph infomax for knowledge graph completion. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (3): 2486- 2499.
|
| 28 |
LI Z F , ZHANG Q , ZHU F F , et al. Knowledge graph representation learning with simplifying hierarchical feature propagation. Information Processing & Management, 2023, 60 (4): 103348.
|
| 29 |
ZHANG Y , CHEN J R , CHENG Z , et al. Edge propagation for link prediction in requirement-cyber threat intelligence knowledge graph. Information Sciences, 2024, 653, 119770.
|
| 30 |
WANG B, SHEN T, LONG G D, et al. Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 1737-1748.
|
| 31 |
XU Z, YE P, CHEN H, et al. Ruleformer: context-aware rule mining over knowledge graph[C]//Proceedings of the 29th International Conference on Computational Linguistics. New York, USA: ACM Press, 2022: 2551-2560.
|
| 32 |
LIU Y, SUN Z Q, LI G Y, et al. I know what you do not know: knowledge graph embedding via co-distillation learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2022: 1329-1338.
|
| 33 |
LI G Y , SUN Z Q , HU W , et al. Position-aware relational Transformer for knowledge graph embedding. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (8): 11580- 11594.
|
| 34 |
BAGHERSHAHI P , HOSSEINI R , MORADI H . Self-attention presents low-dimensional knowledge graph embeddings for link prediction. Knowledge-Based Systems, 2023, 260, 110124.
|
| 35 |
TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg, USA: ACL Press, 2015: 57-66.
|
| 36 |
LI R, CAO Y N, ZHU Q N, et al. How does knowledge graph embedding extrapolate to unseen data: a semantic evidence view[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 5781-5791.
|