1 |
DE COLA T , BISIO I . QoS optimisation of eMBB services in converged 5G-satellite networks. IEEE Transactions on Vehicular Technology, 2020, 69 (10): 12098- 12110.
doi: 10.1109/TVT.2020.3011963
|
2 |
CHEN H , ZHAO D M , CHEN Q B , et al. Joint computation offloading and radio resource allocations in small-cell wireless cellular networks. IEEE Transactions on Green Communications and Networking, 2020, 4 (3): 745- 758.
doi: 10.1109/TGCN.2020.2976932
|
3 |
桑永宣, 魏江坡, 王博, 等. 具有边缘缓存机制的混合启发式任务卸载算法. 计算机工程, 2023, 49 (4): 149- 158.
doi: 10.19678/j.issn.1000-3428.0064783
|
|
SANG Y X , WEI J P , WANG B , et al. Hybrid heuristic task offloading algorithm with edge caching mechanism. Computer Engineering, 2023, 49 (4): 149- 158.
doi: 10.19678/j.issn.1000-3428.0064783
|
4 |
张依琳, 梁玉珠, 尹沐君, 等. 移动边缘计算中计算卸载方案研究综述. 计算机学报, 2021, 44 (12): 2406- 2430.
|
|
ZHANG Y L , LIANG Y Z , YIN M J , et al. Survey on the methods of computation offloading in mobile edge computing. Chinese Journal of Computers, 2021, 44 (12): 2406- 2430.
|
5 |
QU G J , WU H M , LI R D , et al. DMRO: a deep meta reinforcement learning-based task offloading framework for edge-cloud computing. IEEE Transactions on Network and Service Management, 2021, 18 (3): 3448- 3459.
doi: 10.1109/TNSM.2021.3087258
|
6 |
SHENG M , ZHOU D , BAI W G , et al. 6G service coverage with mega satellite constellations. China Communications, 2022, 19 (1): 64- 76.
doi: 10.23919/JCC.2022.01.006
|
7 |
方海, 高媛, 赵扬, 等. 卫星边缘计算中任务卸载与资源分配联合优化算法. 小型微型计算机系统, 2023, 44 (6): 1214- 1219.
|
|
FANG H , GAO Y , ZHAO Y , et al. Joint optimization of task offloading and resource allocation in satellite edge computing. Journal of Chinese Computer Systems, 2023, 44 (6): 1214- 1219.
|
8 |
LI Q , WANG S G , MA X , et al. Service coverage for satellite edge computing. IEEE Internet of Things Journal, 2022, 9 (1): 695- 705.
doi: 10.1109/JIOT.2021.3085129
|
9 |
HAN Z Z, XU C, LIU K, et al. A novel mobile core network architecture for satellite-terrestrial integrated network[C]// Proceedings of the IEEE Global Communications Conference (GLOBECOM). Washington D. C., USA: IEEE Press, 2021: 1-6.
|
10 |
ALSHAROA A , ALOUINI M S . Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization. IEEE Transactions on Wireless Communications, 2020, 19 (8): 5088- 5100.
doi: 10.1109/TWC.2020.2988917
|
11 |
LIU J , DU X Q , CUI J H , et al. Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network. IEEE Internet of Things Journal, 2020, 7 (6): 5345- 5358.
doi: 10.1109/JIOT.2020.2977402
|
12 |
HE M L, ZHONG L, TAN H D, et al. A novel edge computing server selection strategy of LEO constellation broadband network[C]//Proceedings of the IEEE World Congress on Services (SERVICES). Washington D. C., USA: IEEE Press, 2020: 275-280.
|
13 |
TANG Q Q , FEI Z S , LI B , et al. Computation offloading in LEO satellite networks with hybrid cloud and edge computing. IEEE Internet of Things Journal, 2021, 8 (11): 9164- 9176.
doi: 10.1109/JIOT.2021.3056569
|
14 |
YANG D C , WU Q Q , ZENG Y , et al. Energy tradeoff in ground-to-UAV communication via trajectory design. IEEE Transactions on Vehicular Technology, 2018, 67 (7): 6721- 6726.
doi: 10.1109/TVT.2018.2816244
|
15 |
SUN Z , WEI Z Q , YANG N , et al. Two-tier communication for UAV-enabled massive IoT systems: performance analysis and joint design of trajectory and resource allocation. IEEE Journal on Selected Areas in Communications, 2021, 39 (4): 1132- 1146.
doi: 10.1109/JSAC.2020.3018855
|
16 |
ZHOU C H, WU W, HE H L, et al. Delay-aware IoT task scheduling in space-air-ground integrated network[C]//Proceedings of the IEEE Global Communications Conference (GLOBECOM). Washington D. C., USA: IEEE Press, 2019: 1-6.
|
17 |
CHENG X W , LYU F , QUAN W , et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE Journal on Selected Areas in Communications, 2019, 37 (5): 1117- 1129.
doi: 10.1109/JSAC.2019.2906789
|
18 |
SHI Q , ZHAO L Q , ZHANG Y Y , et al. Energy-efficiency versus delay tradeoff in wireless networks virtualization. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 837- 841.
doi: 10.1109/TVT.2017.2738024
|
19 |
MIETTINEN A P, NURMINEN J. Energy efficiency of mobile clients in cloud computing[C]//Proceedings of the 2nd USENIX Conference on Hot topics in Cloud Computing. New York, USA: ACM Press, 2010: 1-10.
|
20 |
LI H . Multi-task offloading and resource allocation for energy-efficiency in mobile edge computing. International Journal of Computer Techniques, 2018, 5 (1): 5- 13.
|
21 |
|
22 |
DENG R Q , DI B Y , CHEN S Z , et al. Ultra-dense LEO satellite offloading for terrestrial networks: how much to pay the satellite operator?. IEEE Transactions on Wireless Communications, 2020, 19 (10): 6240- 6254.
doi: 10.1109/TWC.2020.3001594
|
23 |
GAN Y H, HE Y J. Trajectory optimization and computing offloading strategy in UAV-assisted MEC system[C]//Proceedings of the Computing, Communications and IoT Applications (ComComAp). Washington D. C., USA: IEEE Press, 2021: 132-137.
|
24 |
ZENG F Z , HU Z Z , XIAO Z , et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks. IEEE Transactions on Vehicular Technology, 2020, 69 (7): 7634- 7647.
doi: 10.1109/TVT.2020.2986776
|
25 |
HE J Y. Optimization of edge delay sensitive task scheduling based on genetic algorithm[C]//Proceedings of the International Conference on Algorithms, Data Mining, and Information Technology (ADMIT). Washington D. C., USA: IEEE Press, 2022: 155-159.
|
26 |
BOZORGCHENANI A , TARCHI D , CORAZZA G E . Centralized and distributed architectures for energy and delay efficient fog network-based edge computing services. IEEE Transactions on Green Communications and Networking, 2019, 3 (1): 250- 263.
doi: 10.1109/TGCN.2018.2885443
|