作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (1): 206-215. doi: 10.19678/j.issn.1000-3428.0066766

• 移动互联与通信技术 • 上一篇    下一篇

基于负载预测的多目标优化任务卸载策略

彭世明, 林士飏*(), 贾硕, 杨苗会   

  1. 山东理工大学交通与车辆工程学院, 山东 淄博 255000
  • 收稿日期:2023-01-16 出版日期:2024-01-15 发布日期:2024-01-11
  • 通讯作者: 林士飏
  • 基金资助:
    产学合作协同育人项目(202102473012)

Multi-Objective Optimization Task Offloading Strategy Based on Load Prediction

Shiming PENG, Shiyang LIN*(), Shuo JIA, Miaohui YANG   

  1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2023-01-16 Online:2024-01-15 Published:2024-01-11
  • Contact: Shiyang LIN

摘要:

在车联网中随着智能网联汽车的升级,新兴车载应用对计算能力提出更高要求,车载单元本身的计算能力已远远不够,移动边缘计算(MEC)的出现可以为车辆提供更加可靠的服务。为解决车联网边缘计算中的任务卸载问题,提出基于负载预测的多目标优化卸载策略算法,降低任务时延并实现边缘服务器负载均衡。通过基于自适应优化神经网络的负载预测算法预测MEC服务器的负载,提前感知MEC服务器的负载变化,解决任务卸载滞后问题。以最小化时延及MEC服务器负载均衡为目标,综合考虑通信环境、计算资源、任务量等因素构建多目标优化模型。通过非支配排序遗传算法-Ⅲ(NSGA-Ⅲ)获得最优任务卸载策略。仿真实验结果表明,该算法能对MEC服务器的负载进行较精确的预测。相比MTUOA、NSGA2、QTD和AOS,该算法的任务时延分别降低1.7%、7.3%、12.4%、17.5%,并在MEC服务器负载均衡中取得显著优势,解决MEC服务器负载不均衡的问题。此外,该算法可以根据不同通信小区的通信环境及车辆数等制定差异化的任务卸载方案。

关键词: 车联网, 移动边缘计算, 任务卸载, 负载预测, 负载均衡, 时延

Abstract:

With the upgrading of intelligent connected vehicles in the Internet of Vehicles(IoV), new on-board applications introduce higher requirements for computing power.The computing power of on-board units is far from sufficient. The emergence of Mobile Edge Computing(MEC) can provide more reliable services for vehicles. Aiming at the task offloading problem in edge computing for the IoV, a multi-objective optimization offloading strategy algorithm based on load prediction is proposed to reduce the task delay and realize load balance among edge servers. By using a load prediction algorithm based on adaptive optimization neural networks to predict the load of MEC servers, the load changes of MEC servers are sensed in advance, solving the problem of task offloading lag. A multi-objective optimization model is constructed with the goal of minimizing latency and balancing MEC server load, considering factors such as communication environment, computing resources, and task volume. The optimal task offloading strategy is obtained through the Non-dominated Sorting Genetic Algorithm(NSGA)-Ⅲ (NSGA-Ⅲ). The simulation results show that this algorithm can accurately predict the load of MEC servers. Compared with the MTUOA, NSGA2, QTD, and AOS algorithms, NSGA-Ⅲ reduced task latency by 1.7%, 7.3%, 12.4%, and 17.5%, respectively, and achieved significant advantages in MEC server load balancing, solving the problem of MEC server load imbalance. In addition, the proposed algorithm can develop differentiated task offloading plans based on factors such as the communication environment and number of vehicles in different communication cells.

Key words: Internet of Vehicles(IoV), Mobile Edge Computing(MEC), task offloading, load prediction, load balancing, time delay