作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 268-279. doi: 10.19678/j.issn.1000-3428.0069450

• 图形图像处理 • 上一篇    下一篇

基于目标场景颜色恢复的偏振图像去雾算法

孙超, 范之国*(), 罗茂文, 胡泉   

  1. 合肥工业大学计算机与信息学院, 安徽 合肥 230601
  • 收稿日期:2024-02-19 修回日期:2024-04-28 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 范之国
  • 基金资助:
    国家自然科学基金(61571177)

Polarization Image Dehazing Algorithm Based on Target Scene Color Restoration

SUN Chao, FAN Zhiguo*(), LUO Maowen, HU Quan   

  1. School of Computer and Information Technology, Hefei University of Technology, Hefei 230601, Anhui, China
  • Received:2024-02-19 Revised:2024-04-28 Online:2025-09-15 Published:2025-09-26
  • Contact: FAN Zhiguo

摘要:

尽管现有图像去雾方法在处理浓雾场景时可基本去除图像中的雾气, 但在复原过程中容易导致图像的颜色分布发生明显偏移。针对传统偏振去雾算法色彩失真的问题, 提出一种基于目标场景颜色恢复的偏振图像去雾算法。根据大气光饱和度低与亮度高的特征, 结合总光强图和偏振差分图估计无穷远处大气光值, 以降低白色高亮物体的影响。充分利用无穷远处大气光的估计位置来提取大气光偏振角, 并通过Stokes矢量自动估算出随深度变化的大气光偏振度矩阵。基于大气散射光边缘跳变处的空间相关性, 利用大气光偏振度与图像色度构建正则化约束来校正大气散射光。此外, 为提升目标场景的色彩保真度, 提出自适应色彩均衡方法来改善复原结果的颜色分布。实验结果表明, 相比DCP、BCCR、GPLPF、PLF、POBS等经典去雾算法, 所提算法的NIQE、BRISQUE和偏色因子K分别提升了9.62%、13.49%、40.13%, 并且对于不同雾霾浓度场景均具有良好的复原效果, 有效提高了不同深度下目标的能见度, 避免出现颜色失真现象, 尤其是对浓雾场景同样适用。

关键词: 偏振去雾, 大气光校正, 颜色失真, Stokes矢量, 正则化约束

Abstract:

When processing fog scenes, current image dehazing methods can remove fogs from an image but they tend to cause the color distribution of the image to shift significantly during the restoration process. This study proposes a polarization image dehazing algorithm based on target scene color restoration to address the problem of color distortion in traditional polarization dehazing algorithms. By leveraging the characteristics of low saturation and high brightness of atmospheric light and combining them with the total light intensity and polarization difference diagrams, atmospheric light value at infinity is estimated to reduce the influence of white-highlighted objects. The estimated position of atmospheric light at infinity is used to extract the polarization angle of atmospheric light, and the polarization matrix of atmospheric light varying with depth is automatically estimated using the Stokes vector. Based on the spatial correlation at the edge jumps of atmospheric scattered light, regularization constraints are constructed using atmospheric polarization and image chromaticity to correct the atmospheric scattered light. In addition, to improve the color fidelity of the target scene, this study proposes an adaptive color equalization method to improve the color distribution of the restored results. Compared with classical dehazing algorithms such as DCP, BCCR, GPLPF, PLF, and POBS, the proposed algorithm improves the NIQE, BRISQUE, and color deviation factor K by 9.62%, 13.49%, and 40.13%, respectively. Moreover, it has good restoration effects for scenes with different haze concentrations, effectively improving the visibility of targets at different depths and avoiding color distortion, particularly for dense fog scenes.

Key words: polarization dehazing, atmospheric light correction, color restoration, Stokes vector, regularization constraint