1 |
WANG V, VILME H, MACIEJEWSKI M L, et al. The economic burden of chronic kidney disease and end-stage renal disease. Seminars in Nephrology, 2016, 36(4): 319- 330.
doi: 10.1016/j.semnephrol.2016.05.008
|
2 |
LIU X, WU Y, CHEN Y, et al. Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators. Computers in Biology and Medicine, 2023, 166, 107470.
doi: 10.1016/j.compbiomed.2023.107470
|
3 |
刘奇, 赵丽霞, 郑曙光, 等. 基于DYOLO神经网络的超声图像肾脏检测. 计算机工程, 2021, 47(7): 307- 313.
doi: 10.19678/j.issn.1000-3428.0058565
|
|
LIU Q, ZHAO L X, ZHENG S G, et al. Kidney detection using ultrasound image based on DYOLO neural network. Computer Engineering, 2021, 47(7): 307- 313.
doi: 10.19678/j.issn.1000-3428.0058565
|
4 |
PRIMAKOV S P, IBRAHIM A, VAN TIMMEREN J E, et al. Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nature Communications, 2022, 13, 3423.
doi: 10.1038/s41467-022-30841-3
|
5 |
AHMED M, ISLAM M R. A combined feature-vector based multiple instance learning convolutional neural network in breast cancer classification from histopathological images. Biomedical Signal Processing and Control, 2023, 84, 104775.
doi: 10.1016/j.bspc.2023.104775
|
6 |
张兴鹏, 何东, 杨模, 等. 基于多尺度注意力和数据增强的细胞核分割. 计算机工程, 2025, 51(2): 387- 396.
doi: 10.19678/j.issn.1000-3428.0069116
|
|
ZHANG X P, HE D, YANG M, et al. Nuclei segmentation based on multiscale attention and data augmentation. Computer Engineering, 2025, 51(2): 387- 396.
doi: 10.19678/j.issn.1000-3428.0069116
|
7 |
KARPINSKI J, LAJOIE G, CATTRAN D, et al. Outcome of kidney transplantation from high-risk donors is determined by both structure and function. Transplantation, 1999, 67(8): 1162- 1167.
doi: 10.1097/00007890-199904270-00013
|
8 |
ALTINI N, CASCARANO G D, BRUNETTI A, et al. Semantic segmentation framework for glomeruli detection and classification in kidney histological sections. Electronics, 2020, 9(3): 503.
doi: 10.3390/electronics9030503
|
9 |
MARSH J N, LIU T C, WILSON P C, et al. Development and validation of a deep learning model to quantify glomerulosclerosis in kidney biopsy specimens. JAMA Network Open, 2021, 4(1): e2030939.
doi: 10.1001/jamanetworkopen.2020.30939
|
10 |
GALLEGO J, SWIDERSKA-CHADAJ Z, MARKIEWICZ T, et al. A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H & E stained human tissues. Computerized Medical Imaging and Graphics, 2021, 89, 101865.
doi: 10.1016/j.compmedimag.2021.101865
|
11 |
TEY W K, KUANG Y C, OOI M P L, et al. Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: a comprehensive tissue structure segmentation method. Computer Methods and Programs in Biomedicine, 2018, 155, 109- 120.
doi: 10.1016/j.cmpb.2017.12.004
|
12 |
GINLEY B, JEN K Y, HAN S S, et al. Automated computational detection of interstitial fibrosis, tubular atrophy, and glomerulosclerosis. Journal of the American Society of Nephrology, 2021, 32(4): 837- 850.
doi: 10.1681/ASN.2020050652
|
13 |
LAI Y, LIU X, WU Y, et al. Interstitial fibrosis and tubular atrophy measurement via hierarchical extractions of kidney and atrophy regions with deep learning method. Measurement, 2022, 202, 111885.
doi: 10.1016/j.measurement.2022.111885
|
14 |
SALVI M, MOGETTA A, MEIBURGER K M, et al. Karpinski score under digital investigation: a fully automated segmentation algorithm to identify vascular and stromal injury of Donors'Kidneys. Electronics, 2020, 9(10): 1644.
doi: 10.3390/electronics9101644
|
15 |
HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue. Journal of the American Society of Nephrology, 2019, 30(10): 1968- 1979.
doi: 10.1681/ASN.2019020144
|
16 |
JAYAPANDIAN C P, CHEN Y, JANOWCZYK A R, et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney International, 2021, 99(1): 86- 101.
doi: 10.1016/j.kint.2020.07.044
|
17 |
DENG R, LIU Q, CUI C, et al. Omni-Seg+: a scale-aware dynamic network for pathological image segmentation. [EB/OL]. (2023-02-18)[2024-02-01]. https://arxiv.org/abs/2206.13632.
|
18 |
HU F, DENG R, BAO S, et al. Multi-scale multi-site renal microvascular structures segmentation for whole slide imaging in renal pathology[EB/OL](2023-08-10)[2024-02-01]. https://arxiv.org/abs/2308.05782.
|
19 |
BOUTELDJA N, KLINKHAMMER B M, BVLOW R D, et al. Deep learning-based segmentation and quantification in experimental kidney histopathology. Journal of the American Society of Nephrology, 2021, 32(1): 52- 68.
doi: 10.1681/ASN.2020050597
|
20 |
HÖLSCHER D L, BOUTELDJA N, JOODAKI M, et al. Next-Generation Morphometry for pathomics-data mining in histopathology. Nature Communications, 2023, 14, 470.
doi: 10.1038/s41467-023-36173-0
|
21 |
BEVILACQUA V, PIETROLEONARDO N, TRIGGIANI V, et al. An innovative neural network framework to classify blood vessels and tubules based on Haralick features evaluated in histological images of kidney biopsy. Neurocomputing, 2017, 228, 143- 153.
doi: 10.1016/j.neucom.2016.09.091
|
22 |
HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue. Journal of the American Society of Nephrology, 2019, 30(10): 1968- 1979.
doi: 10.1681/ASN.2019020144
|
23 |
AATRESH A A, YATGIRI R P, CHANCHAL A K, et al. Efficient deep learning architecture with dimension-wise pyramid pooling for nuclei segmentation of histopathology images. Computerized Medical Imaging and Graphics, 2021, 93, 101975.
doi: 10.1016/j.compmedimag.2021.101975
|
24 |
GOODE A, GILBERT B, HARKES J, et al. OpenSlide: a vendor-neutral software foundation for digital pathology. Journal of Pathology Informatics, 2013, 4(1): 27.
doi: 10.4103/2153-3539.119005
|
25 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
26 |
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
28 |
BUENO G, GONZALEZ-LOPEZ L, GARCIA-ROJO M, et al. Data for glomeruli characterization in histopathological images. Data in Brief, 2020, 29, 105314.
doi: 10.1016/j.dib.2020.105314
|
29 |
BERA K, SCHALPER K A, RIMM D L, et al. Artificial intelligence in digital pathology: new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 2019, 16, 703- 715.
doi: 10.1038/s41571-019-0252-y
|
30 |
BAZZI C, STIVALI G, RACHELE G, et al. Arteriolar hyalinosis and arterial hypertension as possible surrogate markers of reduced interstitial blood flow and hypoxia in glomerulonephritis. Nephrology (Carlton), 2015, 20(1): 11- 17.
doi: 10.1111/nep.12339
|
31 |
|
32 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2961-2969.
|
33 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
34 |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Berlin, Germany: Springer, 2018: 3-11.
|
35 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 801-818.
|
36 |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2024-02-01]. https://arxiv.org/abs/2102.04306.
|
37 |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[EB/OL].(2021-05-12)[2024-02-01]. https://arxiv.org/abs/2105.05537.
|
38 |
DENG R, LIU Q, CUI C, et al. Omni-seg: a scale-aware dynamic network for renal pathological image segmentation[EB/OL].(2023-01-18)[2024-02-01]. https://arxiv.org/abs/2206.13632.
|