1 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6569-6578.
|
2 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
3 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector. Berlin, Germany: Springer, 2016.
|
4 |
SINGHA S, AYDIN B. Automated drone detection using YOLOv4. Drones, 2021, 5(3): 95.
doi: 10.3390/drones5030095
|
5 |
LI Y S, YUAN H W, WANG Y F, et al. GGT-YOLO: a novel object detection algorithm for drone-based maritime cruising. Drones, 2022, 6(11): 335.
doi: 10.3390/drones6110335
|
6 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 1440-1448.
|
7 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型. 计算机工程与应用, 2024, 60(9): 142- 150.
|
|
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small target detection from UAV perspective. Computer Engineering and Applications, 2024, 60(9): 142- 150.
|
9 |
程换新, 乔庆元, 骆晓玲, 等. 基于改进YOLOv8的无人机航拍图像目标检测算法. 无线电工程, 2024, 54(4): 871- 881.
|
|
CHENG H X, QIAO Q Y, LUO X L, et al. Object detection algorithm for UAV aerial image based on improved YOLOv8. Radio Engineering, 2024, 54(4): 871- 881.
|
10 |
刘涛, 高一萌, 柴蕊, 等. 改进YOLOv5s的无人机视角下小目标检测算法. 计算机工程与应用, 2024, 60(1): 110- 121.
|
|
LIU T, GAO Y M, CHAI R, et al. Improved small target detection algorithm based on YOLOv5s in UAV view. Computer Engineering and Applications, 2024, 60(1): 110- 121.
|
11 |
陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLOv5的无人机航拍图像目标检测. 计算机工程与应用, 2023, 59(18): 226- 233.
|
|
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLOv5. Computer Engineering and Applications, 2023, 59(18): 226- 233.
|
12 |
崔勇强, 黄谦, 高雪, 等. 城市低空小型无人机目标实时高精度检测算法. 计算机工程与应用, 2024, 60(16): 198- 205.
|
|
CUI Y Q, HUANG Q, GAO X, et al. Real-time high-precision detection algorithm for small UAV targets in urban low-altitude areas. Computer Engineering and Applications, 2024, 60(16): 198- 205.
|
13 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13733-13742.
|
14 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 3-19.
|
15 |
HONG T, LIANG H M, YANG Q Y, et al. A real-time tracking algorithm for multi-target UAV based on deep learning. Remote Sensing, 2023, 15(1): 2.
|
16 |
WU X, LI W, HONG D F, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 91- 124.
doi: 10.1109/MGRS.2021.3115137
|
17 |
ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380- 7399.
doi: 10.1109/TPAMI.2021.3119563
|
18 |
GERALDES R, GONCALVES A, LAI T, et al. UAV-based situational awareness system using deep learning. IEEE Access, 2019, 7, 122583- 122594.
doi: 10.1109/ACCESS.2019.2938249
|
19 |
TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[EB/OL]. [2024-01-07]. https://arxiv.org/abs/2304.00501v7.
|
20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
21 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 12021-12031.
|
22 |
LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012.
|
23 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 7464-7475.
|
24 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
25 |
CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D.C., USA: IEEE Press, 2021: 213-226.
|
26 |
殷旭平. 复杂天气条件下的无人机图像目标检测方法研究[D]. 长沙: 国防科技大学, 2021.
|
|
YIN X P. Research on target detection method of UAV image under complex weather conditions[D]. Changsha: National University of Defense Technology, 2021. (in Chinese)
|
27 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2024-01-07]. https://arxiv.org/abs/2112.05561v1.
|
28 |
XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4794-4803.
|
29 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2023: 1-5.
|
30 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 658-666.
|
31 |
|
32 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2961-2969.
|
33 |
|
34 |
|
35 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|