1 |
LI Y , DING H , LIN Y M , et al. Multi-level textual-visual alignment and fusion network for multimodal aspect-based sentiment analysis. Artificial Intelligence Review, 2024, 57 (4): 78.
|
2 |
ZHAO H , YANG M Y , BAI X Y , et al. A survey on multimodal aspect-based sentiment analysis. IEEE Access, 2024, 12, 12039- 12052.
URL
|
3 |
YANG J , XU M Y , XIAO Y L , et al. AMIFN: aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis. Neurocomputing, 2024, 573, 127222.
|
4 |
SINGH U , ABHISHEK K , AZAD H K . A survey of cutting-edge multimodal sentiment analysis. ACM Computing Surveys, 2024, 56 (9): 1- 38.
|
5 |
杜孟洋, 王红斌, 普祥和. 融入词性自注意力机制的方面级情感分类方法. 吉林大学学报(理学版), 2023, 61 (6): 1375- 1386.
|
|
DU M Y , WANG H B , PU X H . Aspect-level sentiment classification method incorporating part-of-speech self-attention mechanism. Journal of Jilin University Science Edition, 2023, 61 (6): 1375- 1386.
|
6 |
WANG Z Y , GUO J J . Self-adaptive attention fusion for multimodal aspect-based sentiment analysis. Mathematical Biosciences and Engineering, 2023, 21 (1): 1305- 1320.
|
7 |
YANG J , XIONG Y J . Bidirectional complementary correlation-based multimodal aspect-level sentiment analysis. International Journal on Semantic Web and Information Systems, 2024, 20 (1): 1- 16.
|
8 |
XU N, MAO W J, CHEN G D. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, AAAI Press, 2019: 371-378.
|
9 |
TRUONG Q T, LAUW H W. VistaNet: visual aspect attention network for multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, AAAI Press, 2019: 305-312.
|
10 |
|
11 |
MU J , NIE F P , WANG W , et al. MOCOLNet: a momentum contrastive learning network for multimodal aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 2023, 36 (12): 8787- 8800.
|
12 |
PHAN H T , NGUYEN N T , HWANG D . Aspect-level sentiment analysis: a survey of graph convolutional network methods. Information Fusion, 2023, 91, 149- 172.
|
13 |
代巍, 王丰羽, 冀常鹏. 基于情感增强与双图卷积网络的方面级情感分析. 计算机工程, 2024, 50 (5): 120- 127.
doi: 10.19678/j.issn.1000-3428.0067847
|
|
DAI W , WANG F Y , JI C P . Aspect level sentiment analysis based on sentiment-enhanced and dual graph convolutional network. Computer Engineering, 2024, 50 (5): 120- 127.
doi: 10.19678/j.issn.1000-3428.0067847
|
14 |
HOANG M, BIHORAC O A, ROUCES J. Aspect-based sentiment analysis using BERT[C]//Proceedings of the 22nd Nordic Conference on Computational Linguistics. Stroudsburg, USA: ACL Press, 2019: 187-196.
|
15 |
MA F K, HU X M, LIUAW, et al. AMR-based network for aspect-based sentiment analysis[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2023: 322-337.
|
16 |
|
17 |
武星, 殷浩宇, 姚骏峰, 等. 面向视频数据的多模态情感分析. 计算机工程, 2024, 50 (6): 218- 227.
doi: 10.19678/j.issn.1000-3428.0067874
|
|
WU X , YIN H Y , YAO J F , et al. Multimodal sentiment analysis for video data. Computer Engineering, 2024, 50 (6): 218- 227.
doi: 10.19678/j.issn.1000-3428.0067874
|
18 |
郭艳霞, 金勇, 唐宏, 等. 基于动态卷积与残差门控的多模态情感识别. 计算机工程, 2023, 49 (7): 94- 101.
doi: 10.19678/j.issn.1000-3428.0064965
|
|
GUO Y X , JIN Y , TANG H , et al. Multi-modal emotion recognition based on dynamic convolution and residual gating. Computer Engineering, 2023, 49 (7): 94- 101.
doi: 10.19678/j.issn.1000-3428.0064965
|
19 |
WANKHADE M , RAO A C S , KULKARNI C . A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 2022, 55 (7): 5731- 5780.
|
20 |
DZEDZICKIS A , KAKLAUSKAS A , BUCINSKAS V . Human emotion recognition: review of sensors and methods. Sensors (Basel), 2020, 20 (3): 592.
|
21 |
WICK-PEDRO G, DA SILVA C F, INÁCIO M L, et al. Using large language models for identifying satirical news in Brazilian Portuguese[C]//Proceedings of the 16th International Conference on Computational Processing of Portuguese. Washington D.C., USA: IEEE Press, 2024: 156-167.
|
22 |
WANG D , GUO X T , TIAN Y M , et al. TETFN: a text enhanced Transformer fusion network for multimodal sentiment analysis. Pattern Recognition, 2023, 136, 109259.
|
23 |
SUN L C , LIAN Z , LIU B , et al. Efficient multimodal Transformer with dual-level feature restoration for robust multimodal sentiment analysis. IEEE Transactions on Affective Computing, 2023, 15 (1): 309- 325.
doi: 10.1109/TAFFC.2023.3274829
|
24 |
BIRJALI M , KASRI M , BENI-HSSANE A . A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 2021, 226, 107134.
|
25 |
CAI Y , LI X , LI J . Emotion recognition using different sensors, emotion models, methods and datasets: a comprehensive review. Sensors (Basel), 2023, 23 (5): 2455.
|
26 |
JU X C, ZHANG D, XIAO R, et al. Joint multi-modal aspect-sentiment analysis with auxiliary cross-modal relation detection[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2021: 4395-4405.
|
27 |
|
28 |
YANG L , NA J C , YU J F . Cross-modal multitask transformer for end-to-end multimodal aspect-based sentiment analysis. Information Processing & Management, 2022, 59 (5): 103038.
|
29 |
HUANG C Q , ZHANG J L , WU X M , et al. TeFNA: Text-centered fusion network with crossmodal attention for multimodal sentiment analysis. Knowledge-Based Systems, 2023, 269, 110502.
|
30 |
MEWADA A , DEWANG R K . SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting. The Journal of Supercomputing, 2023, 79 (5): 5516- 5551.
|
31 |
KEERTHAN KUMAR T G, DHAKATE H, KOOLAGUDI S G. ⅡMH: intention identification in multimodal human utterances[C]//Proceedings of the 2023 15th International Conference on Contemporary Computing. New York, USA: ACM Press, 2023: 337-344.
|
32 |
HUANG J , LU P T , SUN S F , et al. Multimodal sentiment analysis in realistic environments based on cross-modal hierarchical fusion network. Electronics, 2023, 12 (16): 3504.
|
33 |
|
34 |
KHAN Z, FU Y. Exploiting BERT for multimodal target sentiment classification through input space translation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 3034-3042.
|
35 |
WANG J H, GAO Y, LI H K. An interactive attention mechanism fusion network for aspect-based multimodal sentiment analysis[C]//Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC). Washington D.C., USA: IEEE Press, 2023: 268-275.
|
36 |
HU X R , YAMAMURA M . Hierarchical fusion network with enhanced knowledge and contrastive learning for multimodal aspect-based sentiment analysis on social media. Sensors, 2023, 23 (17): 7330.
|