1 |
CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, USA: ACL Press, 2015: 167-176.
|
2 |
YANG S, FENG D W, QIAO L B, et al. Exploring pre-trained language models for event extraction and generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2019: 5284-5294.
|
3 |
闻克妍, 纪婉婷, 宋宝燕. 融合局部上下文的双图文档级关系抽取方法. 小型微型计算机系统, 2025, 46 (3): 535- 541.
|
|
WEN K Y , JI W T , SONG B Y . Bi-graph-based document-level relation extraction with local context fusion. Journal of Chinese Computer Systems, 2025, 46 (3): 535- 541.
|
4 |
XU N, XIE H H, ZHAO D Y. A novel joint framework for multiple Chinese events extraction[C]// Proceedings of the 19th Chinese National Conference on Computational Linguistics. Berlin, Germany: Springer, 2020: 174-183.
|
5 |
SHENG J W, GUO S, YU B W, et al. CasEE: a joint learning framework with cascade decoding for overlapping event extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, USA: ACL Press, 2021: 164-174.
|
6 |
CAO H, LI J Y, SU F F, et al. OneEE: a one-stage framework for fast overlapping and nested event extraction[C]//Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of Korea: International Committee on Computational Linguistics, 2022: 1953-1964.
|
7 |
NGUYEN T M, NGUYEN T H. One for all: neural joint modeling of entities and events[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 6851-6858.
|
8 |
LIU X, LUO Z C, HUANG H Y. Jointly multiple events extraction via attention-based graph information aggregation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2018: 1247-1256.
|
9 |
SHA L, QIAN F, CHANG B B, et al. Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 5916-5923.
|
10 |
LUO Y, ZHAO H. Bipartite flat-graph network for nested named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 6408-6418.
|
11 |
|
12 |
VASWWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 6000-6010.
|
13 |
|
14 |
WALKER C , STRASSEL S , MEDERO J , et al. ACE 2005 multilingual training corpus. Progress of Theoretical Physics Supplements, 2006, 110, 261- 276.
|
15 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2019: 4171-4186.
|
16 |
张强, 曾俊玮, 陈锐. 基于对比学习与梯度惩罚的实体关系联合抽取模型. 吉林大学学报(理学版), 2024, 62 (5): 1155- 1162.
|
|
ZHANG Q , ZENG J W , CHEN R . Entity-relation joint extraction model based on contrastive learning and gradient penalty. Journal of Jilin University (Science Edition), 2024, 62 (5): 1155- 1162.
|
17 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 1025-1035.
|
18 |
|
|
|
19 |
MA Y D, LIU Q, QUAN Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]//Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing. Washington D.C., USA: IEEE Press, 2004: 743-746.
|
20 |
|
21 |
ZHOU Y, CHEN Y B, ZHAO J, et al. What the role is vs. what plays the role: semi-supervised event argument extraction via dual question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 14638-14646.
|
22 |
LI X Y , LI F Y , PAN L , et al. DuEE: a large-scale dataset for Chinese event extraction in real-world scenarios. Berlin, Germany: Springer, 2020.
|
23 |
WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, USA: ACL Press, 2020: 38-45.
|
24 |
DU X Y, CARDIE C. Document-level event role filler extraction using multi-granularity contextualized encoding[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 8010-8020.
|
25 |
LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York, USA: ACM Press, 2001: 282-289.
|
26 |
ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association forComputational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: ACL Press, 2017: 1227-1236.
|
27 |
LI F Y, PENG W H, CHEN Y G, et al. Event extraction as multi-turn question answering[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, USA: ACL Press, 2020: 829-838.
|