1 |
YIN J, GAN C J, ZHAO K Q, et al. A novel model for imbalanced data classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 6680-6687.
|
2 |
LIN X , QUAN Z , WANG Z J , et al. A novel molecular representation with BiGRU neural networks for learning atom. Briefings in Bioinformatics, 2020, 21 (6): 2099- 2111.
doi: 10.1093/bib/bbz125
|
3 |
WANG T, WANG C, ZHOU X H, et al. An overview of FPGA based deep learning accelerators: challenges and opportunities[C]//Proceedings of the 21st International Conference on High Performance Computing and Communications. Washington D.C., USA: IEEE Press, 2019: 1674-1681.
|
4 |
CHEN T W, HSIEH H A, FAN Y C. High speed Winograd convolutional circuit for convolutional neural networks[C]//Proceedings of IEEE International Conference on Consumer Electronics. Washington D.C., USA: IEEE Press, 2022: 347-355.
|
5 |
TU F , WU Z , WANG Y , et al. TranCIM: full-digital bitline-transpose CIM-based sparse transformer accelerator with pipeline/parallel reconfigurable modes. IEEE Journal of Solid-State Circuits, 2023, 58 (6): 1798- 1809.
doi: 10.1109/JSSC.2022.3213542
|
6 |
LE Y Q, WANG Z J, QUAN Z, et al. ACV-tree: a new method for sentence similarity modeling[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 4137-4143.
|
7 |
MAKHATAEVA Z , VAROL H A . Augmented reality for robotics: a review. Robotics, 2020, 9 (2): 21.
doi: 10.3390/robotics9020021
|
8 |
XIE J, WAN S H, JIN P Q. Fast and effective object classification for big image data[C]//Proceedings of the 2020 IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2020: 5852-5854.
|
9 |
CHEN Z P , YAO B , WANG Z J , et al. ITISS: an efficient framework for querying big temporal data. GeoInformatica, 2020, 24, 27- 59.
doi: 10.1007/s10707-019-00362-1
|
10 |
罗锦钊, 孙玉龙, 钱增志, 等. 人工智能大模型综述及展望. 无线电工程, 2023, 53 (11): 2461- 2472.
|
|
LUO J Z , SUN Y L , QIAN Z Z , et al. Overview and prospect of artificial intell-igence large models. Radio Engineering, 2023, 53 (11): 2461- 2472.
|
11 |
HABIB G , QURESHI S . Optimization and acceleration of convolutional neural networks: a survey. Journal of King Saud University-Computer and Information Sciences, 2022, 34 (7): 4244- 4268.
doi: 10.1016/j.jksuci.2020.10.004
|
12 |
AHMAD A , PASHA M A . FFConv: an FPGA-based accelerator for fast convolution layers in convolutional neural networks. ACM Transactions on Embedded Computing Systems, 2020, 19 (2): 1- 24.
|
13 |
王庆林, 李东升, 梅松竹, 等. 面向飞腾多核处理器的Winograd快速卷积算法优化. 计算机研究与发展, 2020, 57 (6): 1140- 1151.
doi: 10.7544/issn1000-1239.2020.20200107
|
|
WANG Q L , LI D S , MEI S Z , et al. Optimizing Winograd-based fast convolution algorithm on phytium multi-core CPUs. Journal of Computer Research and Development, 2020, 57 (6): 1140- 1151.
doi: 10.7544/issn1000-1239.2020.20200107
|
14 |
HU Y, LIU Y, LIU Z. A survey on convolutional neural network accelerators: GPU, FPGA and ASIC[C]//Proceedings of the 14th International Conference on Computer Research and Development (ICCRD). Washington D. C., USA: IEEE Press, 2022: 100-107.
|
15 |
吴瑞东, 刘冰, 付平, 等. 应用于极致边缘计算场景的卷积神经网络加速器架构设计. 电子与信息学报, 2023, 45 (6): 1933- 1943.
URL
|
|
WU R D , LIU B , FU P , et al. Convolutional neural network accelerator architecture design for ultimate edge computing scenario. Journal of Electronics & Information Technology, 2023, 45 (6): 1933- 1943.
URL
|
16 |
SINGH R , GILL S S . Edge AI: a survey. Internet of Things and Cyber-Physical Systems, 2023, 3, 71- 92.
doi: 10.1016/j.iotcps.2023.02.004
|
17 |
WINOGRAD S . Arithmetic complexity of computations. Berlin, Germany: Springer, 1980.
|
18 |
HUANG C, DONG X, LI Z, et al. Efficient stride 2 Winograd convolution method using unified transformation matrices on FPGA[C]//Proceedings of the 2021 International Conference on Field-Programmable Technology (ICFPT). Washington D. C., USA: IEEE Press, 2021: 1-9.
|
19 |
焦李成, 孙其功, 杨育婷, 等. 深度神经网络FPGA设计进展、实现与展望. 计算机学报, 2022, 45 (3): 441- 471.
|
|
JIAO L C , SUN Q G , YANG Y T , et al. Development, implementation and prospect of FPGA-based deep neural networks. Chinese Journal of Computers, 2022, 45 (3): 441- 471.
|
20 |
|
21 |
SABIR D , HANIF M A , HASSAN A , et al. TiQSA: workload minimization in convolutional neural networks using tile quantization and symmetry approximation. IEEE Access, 2021, 9, 53647- 53468.
doi: 10.1109/ACCESS.2021.3069906
|
22 |
李双峰. TensorFlow Lite: 端侧机器学习框架. 计算机研究与发展, 2020, 57 (9): 1839- 1853.
doi: 10.11897/SP.J.1016.2022.00441
|
|
LI S F . TensorFlow Lite: on-device machine learning framework. Journal of Computer Research and Development, 2020, 57 (9): 1839- 1853.
doi: 10.11897/SP.J.1016.2022.00441
|
23 |
IE L, ZHANG A, YANG W, et al. Remaining useful life prediction of lithium batteries based on CNN-GRU model[C]//Proceedings of the 6th Conference on Energy Internet and Energy System Integration (EI2). Washington D. C., USA: IEEE Press, 2022: 1683-1688.
|
24 |
LIU X, CHEN Y, HAO C, et al. WinoCNN: kernel sharing Winograd systolic array for efficient convolutional neural network acceleration on FPGAs[C]//Proceedings of the 32nd International Conference on Application-Specific Systems, Architectures and Processors (ASAP). Washington D. C., USA: IEEE Press, 2021: 258-265.
|
25 |
张多利, 沈休垒, 宋宇鲲, 等. 基于异构多核可编程系统的大点FFT卷积设计与实现. 电子技术应用, 2017, 43 (3): 16- 20.
|
|
ZHANG D L , SHEN X L , SONG Y K , et al. Design and implementation of large FFT convolution on heterogeneous multicore programmable system. Application of Electronic Technique, 2017, 43 (3): 16- 20.
|