| 1 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 1-9.
|
| 2 |
REN H L , HUANG T , YAN H Y . Adversarial examples: attacks and defenses in the physical world. International Journal of Machine Learning and Cybernetics, 2021, 12 (11): 3325- 3336.
doi: 10.1007/s13042-020-01242-z
|
| 3 |
冯博, 刘万平, 南海. 结合最大内接圆的图像对抗样本生成算法. 小型微型计算机系统, 2024, 45 (6): 1436- 1443.
|
|
FENG B , LIU W P , NAN H . Image adversarial examples generation algorithm combined with maximum inscribed circle. Journal of Chinese Computer Systems, 2024, 45 (6): 1436- 1443.
|
| 4 |
TANG L, YE D, LV Y, et al. Once and for all: universal transferable adversarial perturbation against deep hashing-based facial image retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2024: 5136-5144.
|
| 5 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 86-94.
|
| 6 |
XU K, QIN M H, SUN F, et al. Learning in the frequency domain[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 1737-1746.
|
| 7 |
JIA Z Y, LIN Y F, CAI X Y, et al. SST-EmotionNet: spatial-spectral-temporal based attention 3D dense network for EEG emotion recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 2909-2917.
|
| 8 |
SONG X F , XU D H , PENG C , et al. A two-stage frequency-domain generation algorithm based on differential evolution for black-box adversarial samples. Expert Systems with Applications, 2024, 249, 123741.
doi: 10.1016/j.eswa.2024.123741
|
| 9 |
陈宇飞, 沈超, 王骞, 等. 人工智能系统安全与隐私风险. 计算机研究与发展, 2019, 56 (10): 2135- 2150.
|
|
CHEN Y F , SHEN C , WANG Q , et al. Security and privacy risks in artificial intelligence systems. Journal of Computer Research and Development, 2019, 56 (10): 2135- 2150.
|
| 10 |
WANG D H , YAO W , JIANG T S , et al. Improving transferability of universal adversarial perturbation with feature disruption. IEEE Transactions on Image Processing, 2024, 33, 722- 737.
doi: 10.1109/TIP.2023.3345136
|
| 11 |
|
| 12 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2574-2582.
|
| 13 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2017: 39-57.
|
| 14 |
SU J W , VARGAS D V , SAKURAI K . One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 2019, 23 (5): 828- 841.
doi: 10.1109/TEVC.2019.2890858
|
| 15 |
MOPURI K R, GARG U, VENKATESH BABU R. Fast feature fool: a data independent approach to universal adversarial perturbations[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/1707.05572.
|
| 16 |
MOPURI K R , GANESHAN A , BABU R V . Generalizable data-free objective for crafting universal adversarial perturbations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (10): 2452- 2465.
doi: 10.1109/TPAMI.2018.2861800
|
| 17 |
ZHANG C N, BENZ P, KARJAUV A, et al. Data-free universal adversarial perturbation and black-box attack[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 7848-7857.
|
| 18 |
YE Z X, CHENG X W, HUANG X L. FG-UAP: feature-gathering universal adversarial perturbation[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2023: 1-8.
|
| 19 |
ZHANG Y H , RUAN W J , WANG F , et al. Generalizing universal adversarial perturbations for deep neural networks. Machine Learning, 2023, 112 (5): 1597- 1626.
doi: 10.1007/s10994-023-06306-z
|
| 20 |
LIU X N, ZHONG Y Y, ZHANG Y H, et al. Enhancing generalization of universal adversarial perturbation through gradient aggregation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 4412-4421.
|
| 21 |
LIU Y , LI C , WANG Z C , et al. Transferable adversarial attack based on sensitive perturbation analysis in frequency domain. Information Sciences, 2024, 678, 120971.
doi: 10.1016/j.ins.2024.120971
|
| 22 |
WANG H H, WU X D, HUANG Z Y, et al. High-frequency component helps explain the generalization of convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 8681-8691.
|
| 23 |
YIN D, LOPES R G, SHLENS J, et al. A Fourier perspective on model robustness in computer vision[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Washington D.C., USA: IEEE Press, 2019: 13276-13286.
|
| 24 |
WANG Y , SUN Q D , RONG D Z , et al. Multi-domain awareness for compressed deepfake videos detection over social networks guided by common mechanisms between artifacts. Computer Vision and Image Understanding, 2024, 247, 104072.
doi: 10.1016/j.cviu.2024.104072
|
| 25 |
|
| 26 |
CAO H , SUN Q D , LI Y Q , et al. Efficient history-driven adversarial perturbation distribution learning in low frequency domain. ACM Transactions on Privacy and Security, 2024, 27 (1): 1- 25.
|
| 27 |
WENG J J , LUO Z M , LIN D Z , et al. Comparative evaluation of recent universal adversarial perturbations in image classification. Computers Security, 2024, 136, 103576.
doi: 10.1016/j.cose.2023.103576
|
| 28 |
SHARMA Y, DING G W, BRUBAKER M A. On the effectiveness of low frequency perturbations[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2019: 3389-3396.
|
| 29 |
DENG Y P , KARAM L J . Frequency-tuned universal adversarial attacks on texture recognition. IEEE Transactions on Image Processing, 2022, 31, 5856- 5868.
doi: 10.1109/TIP.2022.3202366
|