作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 176-187. doi: 10.19678/j.issn.1000-3428.0069619

• 计算机视觉与图形图像处理 • 上一篇    下一篇

空频域联合优化的通用对抗扰动生成方法

耿荣1, 孙钦东1,2,*(), 曹晗1,3, 王艳1   

  1. 1. 西安理工大学网络计算与安全技术陕西省重点实验室, 陕西 西安 710048
    2. 西安交通大学网络空间安全学院, 陕西 西安 710049
    3. 四川数字经济产业发展研究院, 四川 成都 610036
  • 收稿日期:2024-03-19 修回日期:2024-07-25 出版日期:2026-01-15 发布日期:2024-10-10
  • 通讯作者: 孙钦东
  • 作者简介:

    耿荣, 男, 博士研究生, 主研方向为机器学习、网络安全

    孙钦东(通信作者), 教授、博士、博士生导师

    曹晗, 博士研究生

    王艳, 博士研究生

  • 基金资助:
    国家自然科学基金(62272378); 四川省自然科学基金(2023NSFSC0502); 四川省自然科学基金(2022NSFSC0554); 四川省自然科学基金(2022NSFSC0549); 陕西省高校青年创新团队(2019-38)

Generalized Method for Universal Adversarial Perturbations Using Joint Optimization in Spatial-Frequency Domains

GENG Rong1, SUN Qindong1,2,*(), CAO Han1,3, WANG Yan1   

  1. 1. Shaanxi Key Laboratory of Network Computing and Security, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
    2. School of Cyber Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    3. Sichuan Digital Economy Industry Development Research Institute, Chengdu 610036, Sichuan, China
  • Received:2024-03-19 Revised:2024-07-25 Online:2026-01-15 Published:2024-10-10
  • Contact: SUN Qindong

摘要:

通用对抗扰动(UAP)的空域信息直观表示了扰动的视觉特征, 频域信息包含了扰动的结构和纹理, 联合分析扰动的空域和频域信息, 有助于理解UAP的生成机制及其对图像分类模型鲁棒性的影响。已有研究大多关注扰动空域信息的分布和变化, 忽略了频率分量的作用, 限制了UAP的泛化能力。针对此问题, 提出一种空频域联合优化的图像UAP生成方法, 使用对抗样本置信度损失、扰动空域距离损失和扰动频率引导损失, 从空域和频域角度训练模型, 生成具有高攻击性和迁移性的UAP。其中, 对抗样本置信度损失用于增强扰动的攻击性, 扰动空域距离损失优化扰动的空域大小, 扰动频率引导损失控制扰动中频率分量的比重。实验结果表明, UAP的低频分量对攻击效果影响较大, 在相同扰动空域内, 低频分量越多, 扰动攻击成功率越高; 与基线方法对比, 通过联合优化空域和频域生成的UAP具有较强的攻击性和迁移性, 在生成速度方面也有显著的优势。

关键词: 通用对抗扰动, 空频域联合优化, 对抗样本置信度, 频率引导, 频率分量

Abstract:

The spatial information of a Universal Adversarial Perturbation (UAP) intuitively represents the visual characteristics of perturbations, whereas the frequency domain information includes the structure and texture of perturbations. Joint analysis of the spatial and frequency domain information of perturbations helps understand the generation mechanism of UAP and its impact on the robustness of image classification models. Most existing studies have focused on the distribution and changes in perturbed spatial information, neglecting the role of frequency components and limiting the generalization ability of the UAP. To address this issue, a joint optimization method for image UAP generation in the spatial and frequency domains is proposed. This method utilizes the adversarial sample confidence loss, perturbation spatial distance loss, and perturbation frequency guidance loss to train the model from both spatial and frequency perspectives, generating a UAP with high attack and transferability. The adversarial sample confidence loss is used to enhance the aggressiveness of disturbances, disturbance spatial distance loss optimizes the spatial size of disturbances, and disturbance frequency guided loss controls the proportion of the frequency components in disturbances. The experimental results indicate that the low-frequency components of the UAP have a significant impact on attack effectiveness. Within the same perturbation space, the more low-frequency components, the higher the success rate of perturbation attacks. Compared with the baseline method, the UAP generated by jointly optimizing the spatial and frequency domains has strong aggressiveness and transferability. Moreover, it has significant advantages in terms of generation speed.

Key words: Universal Adversarial Perturbations (UAP), joint optimization in spatial-frequency domains, adversarial sample confidence, frequency guided, frequency component