作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 166-175. doi: 10.19678/j.issn.1000-3428.0069995

• 计算机视觉与图形图像处理 • 上一篇    下一篇

基于纹理知识引导的跨域织物缺陷检测

李叔罡, 李爽*(), 刘驰   

  1. 北京理工大学计算机学院, 北京 100081
  • 收稿日期:2024-06-12 修回日期:2024-07-26 出版日期:2026-01-15 发布日期:2024-10-16
  • 通讯作者: 李爽
  • 作者简介:

    李叔罡, 男, 博士研究生, 主研方向为计算机视觉、迁移学习

    李爽(通信作者), 副教授

    刘驰, 教授

  • 基金资助:
    国家重点研发计划(2021YFB3301500)

Cross-Domain Fabric Defect Detection Guided by Texture Knowledge

LI Shugang, LI Shuang*(), LIU Chi   

  1. College of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-06-12 Revised:2024-07-26 Online:2026-01-15 Published:2024-10-16
  • Contact: LI Shuang

摘要:

织物缺陷目标检测在纺织生产过程中是不可或缺的关键步骤。然而, 在实际情况下获取大量标注数据是十分困难的。无监督域自适应方法为该问题提供了有效的解决方案, 能够在没有目标域数据标注的情况下提升模型性能。然而, 现有的方法虽然在经典数据集上表现出色, 但在应用于更复杂、纹理更丰富的织物缺陷检测任务中时, 模型性能会明显下降。为了解决该问题, 提出一种基于纹理知识引导(TKG)的跨域织物缺陷检测方法, 旨在增强目标检测迁移模型在织物图像上的检测性能。TKG方法包含纹理增强模块、联合注意力模块和一致-对抗模块3个关键部分。纹理增强模块通过傅里叶变换来增强输入图像中的纹理信息, 使得模型能够更好地捕捉到复杂的纹理特征; 联合注意力模块引入一种注意力机制, 能够捕获更为全面的纹理和结构信息, 通过自适应地调整不同区域和通道的权重, 增强模型对关键纹理和缺陷区域的关注; 一致-对抗模块通过一致性训练和对抗性训练增强模型对目标域数据的适应性, 提升模型在目标域的检测性能。实验结果表明, 相较于对比方法, TKG方法在织物缺陷目标检测任务中表现出显著的优越性, 在斜纹到平纹的跨域检测实验中, TKG方法在mAP@0.5指标上实现了最高3.1百分点的性能提升, 体现了该方法在实际织物生产环境数据中优秀的跨域缺陷检测能力。

关键词: 目标检测, 域自适应, 织物缺陷, 纹理增强, 频域信息

Abstract:

Detection of fabric defects is an indispensable step in textile production. However, obtaining large amounts of annotated data in practical situations is difficult. The unsupervised domain adaptation method provides an effective solution to this problem, which can improve the model performance without target domain data annotation. However, although existing methods perform well on classical datasets, their model performance decreases significantly when applied to more complex and textured fabric defect detection tasks. To address this issue, a Texture Knowledge Guided (TKG) cross-domain fabric defect detection method is proposed to enhance the detection performance of the object detection transfer model on fabric images. The TKG method comprises three key components: texture enhancement, joint attention, and consistency-adversarial modules. The texture enhancement module enhances the texture information in the input image via Fourier transform, enabling the model to better capture complex texture features. The joint attention module introduces an attention mechanism that can capture more comprehensive texture and structural information. By adaptively adjusting the weights of different regions and channels, it enhances the attention of the model to key textures and defect areas. The consistency-adversarial module enhances the adaptability of the model to target domain data via consensus training and adversarial training, improving the detection performance of the model in the target domain. The experimental results show that compared with the comparative methods, the TKG method exhibits significant superiority in fabric defect target detection tasks. In the cross-domain detection experiment from twill to plain weave, the TKG method achieves a performance improvement of up to 3.1 percentage points in mAP@0.5, reflecting the excellent cross-domain defect detection capability of this method using actual fabric production environment data.

Key words: object detection, domain adaptation, fabric defect, texture enhancement, frequency domain information