[1] 张晓丽, 杨家海, 孙晓晴, 等. 分布式云的研究进展综述[J]. 软件学报, 2018, 29(7): 2116-2132. ZHANG X L, YANG J H, SUN X Q, et al. Survey of geo-distributed cloud research progress[J]. Journal of Software, 2018, 29(7): 2116-2132. (in Chinese) [2] WANG L, LI L, XU L M, et al. Failure-resilient distributed inference with model compression over heterogeneous edge devices[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 12680-12692. [3] NIU C Y, DING Y C, LU J H, et al. Collaborative learning of on-device small model and cloud-based large model: advances and future directions[EB/OL].[2025-10-25]. https://arxiv.org/abs/2504.15300. [4] 曾建电, 王田, 贾维嘉, 等. 传感云研究综述[J]. 计算机研究与发展, 2017, 54(5): 925-939. ZENG J D, WANG T, JIA W J, et al. A survey on sensor-cloud[J]. Journal of Computer Research and Development, 2017, 54(5): 925-939. (in Chinese) [5] 梁玉珠, 梅雅欣, 杨毅, 等. 一种基于边缘计算的传感云低耦合方法[J]. 计算机研究与发展, 2020(3): 639-648. LIANG Y Z, MEI Y X, YANG Y, et al. A low-coupling method in sensor-cloud systems based on edge computing[J]. Journal of Computer Research and Development, 2020(3): 639-648. (in Chinese) [6] 王田, 王文华, 徐旸. 传感云与边缘计算[M]. 北京: 人民邮电出版社, 2025. WANG T, WANG W H, XU Y. Sensor-cloud and edge computing[M]. Beijing: People’s Posts and Telecommunications Press, 2025. (in Chinese) [7] WANG Z Y, GOUDARZI M, BUYYA R. TF-DDRL: a Transformer-enhanced distributed DRL technique for scheduling IoT applications in edge and cloud computing environments[J]. IEEE Transactions on Services Computing, 2025, 18(2): 1039-1053. [8] 王思轩. 数字化转型架构[M].北京: 电子工业出版社, 2021. WANG S X. Digital transformation architecture: methodology and cloud-native practice[M]. Beijing: Publishing House of Electronics Industry, 2021. (in Chinese) [9] LIU Z Y, CHEN X, WU H, et al. Integrated sensing and edge AI: realizing intelligent perception in 6G[J]. IEEE Communications Surveys & Tutorials, 2025, 28: 2725-2770. [10] LUO Q Y, HU S H, LI C L, et al. Resource scheduling in edge computing: a survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2131-2165. [11] HUANG F Y, WANG W H, LIU Q, et al. DRMQ: dynamic resource management for enhanced QoS in collaborative edge-edge industrial environments[J]. IEEE Transactions on Services Computing, 2025, 18(2): 743-757. [12] 唐朝刚, 李召, 肖硕, 等. 一种面向车载边缘计算基于服务缓存的任务协同卸载算法[J]. 计算机学报, 2025, 48(4): 864-876. TANG C G, LI Z, XIAO S, et al. Service caching based collaborative task offloading algorithm in vehicular edge computing[J]. Chinese Journal of Computers, 2025, 48(4): 864-876. (in Chinese) [13] 国务院. 关于印发"十四五"数字经济发展规划的通知(国发〔2021〕29号)[J]. 中国军转民, 2022(1): 6-12. State Council. Notice on issuing the "14th Five-Year" plan for digital economy development (state council document No. 29〔2021〕)[J]. China Defence Industry Conversion, 2022(1): 6-12. (in Chinese) [14] 国家发展改革委, 国家数据局, 中央网信办, 工业和信息化部, 国家能源局. 关于深入实施"东数西算"工程加快构建全国一体化算力网的实施意见(发改数据〔2023〕1779号)[EB/OL].[2025-10-25]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202312/t20231229_1363000.html. National Development and Reform Commission, National Data Administration, Cyberspace Administration of China, Ministry of Industry and Information Technology, National Energy Administration. Implementation opinions on further deepening the "East Data, West Computing" project to accelerate the construction of a national integrated computing power network (development and reform data 〔2023〕 No. 1779)[EB/OL].[2025-10-25]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202312/t20231229_1363000.html. (in Chinese) [15] SALI S, MERIBOUT A, MAJEED A, et al. Real-time object detection and associated hardware accelerators targeting autonomous vehicles: a review[EB/OL].[2025-10-12]. https://arxiv.org/abs/2509.04173. [16] KAREEM AWAD W, ZAINOL ARIFFIN K A, AHMAD NAZRI M Z, et al. Resource allocation strategies and task scheduling algorithms for cloud computing: a systematic literature review[J]. Journal of Intelligent Systems, 2025, 34: 20240441. [17] 工业和信息化部, 中央网络安全和信息化委员会办公室, 教育部, 国家卫生健康委员会, 中国人民银行, 国务院国有资产监督管理委员会. 算力基础设施高质量发展行动计划(工信部联通信〔2023〕180号)[EB/OL].[2025-10-25]. https://www.gov.cn/zhengce/zhengceku/202310/content_6907900.htm. Ministry of Industry and Information Technology, Office of the Central Cyberspace Administration of China, Ministry of Education, National Health Commission, People’s Bank of China, State-owned Assets Supervision and Administration Commission of the State Council. Action plan for the high-quality development of computing power infrastructure(joint MIIT communication document 〔2023〕 No. 180)[EB/OL].[2025-10-25]. https://www.gov.cn/zhengce/zhengceku/202310/content_6907900.htm. (in Chinese) [18] 鲁飞鸿, 罗杨一飞, 高士淇, 等. 基于不确定性校准的云边协同推理框架[J]. 计算机学报, 2025, 48(10): 2487-2507. LU F H, LUO Y Y F, GAO S Q, et al. An uncertainty-calibrated cloud-edge collaborative inference framework[J]. Chinese Journal of Computers, 2025, 48(10): 2487-2507. (in Chinese) [19] WANG Z, WU F, YU F, et al. Federated continual learning for edge-AI: a comprehensive survey[EB/OL].[2025-10-25]. https://arxiv.org/abs/2411.13740. [20] WANG L P, CHEN S, JIANG L N, et al. Parameter-efficient fine-tuning in large language models: a survey of methodologies[J]. Artificial Intelligence Review, 2025, 58(8): 227. [21] LI Y T, WANG W H, WANG T. pFSSL-D: generalization meets personalization in dual-phase federated semi-supervised learning[C]//Proceedings of the IEEE 41st International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2025: 2188-2200. [22] YANG C P, ZHU Y, LU W, et al. Survey on knowledge distillation for large language models: methods, evaluation, and application[J]. ACM Transactions on Intelligent Systems and Technology, 2025, 16(6): 1-27. [23] BECKER S, SCHMIDT F, GULENKO A, et al. Towards AIOps in edge computing environments[C]//Proceedings of the IEEE International Conference on Big Data (Big Data). Washington D.C., USA: IEEE Press, 2020: 3470-3475. [24] AHMED I, SYED M A, MAARUF M, et al. Distributed computing in multi-agent systems: a survey of decentralized machine learning approaches[J]. Computing, 2024, 107(1): 2. [25] SUSNJAK T, MCINTOSH T R, BARCZAK A L C, et al. Over the edge of chaos? Excess complexity as a roadblock to artificial general intelligence[J]. IEEE Transactions on Cybernetics, 2026, 56(1): 29-41. |