1 |
ZHOU Z , CHEN X , LI E , et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 2019, 107 (8): 1738- 1762.
doi: 10.1109/JPROC.2019.2918951
|
2 |
WANG X F , HAN Y W , LEUNG V C M , et al. Convergence of edge computing and deep learning: a comprehensive survey. IEEE Communications Surveys & Tutorials, 2020, 22 (2): 869- 904.
doi: 10.1109/COMST.2020.2970550
|
3 |
郭斌, 刘思聪, 刘琰, 等. 智能物联网: 概念、体系架构与关键技术. 计算机学报, 2023, 46 (11): 2259- 2278.
doi: 10.11897/SP.J.1016.2023.02259
|
|
GUO B , LIU S C , LIU Y , et al. AIoT: the concept, architecture and key techniques. Journal of Computer Science and Technology, 2023, 46 (11): 2259- 2278.
doi: 10.11897/SP.J.1016.2023.02259
|
4 |
张祥俊, 伍卫国, 张弛, 等. 面向移动边缘计算网络的高能效计算卸载算法. 软件学报, 2023, 34 (2): 849- 867.
doi: 10.13328/j.cnki.jos.006417
|
|
ZHANG X J , WU W G , ZHANG C , et al. Energy-efficiency computing offloading algorithm for mobile edge computing networks. Journal of Software, 2023, 34 (2): 849- 867.
doi: 10.13328/j.cnki.jos.006417
|
5 |
李亚国, 李冠良, 张凯, 等. 基于人工智能与边缘代理的物联网框架设计. 计算机工程, 2023, 49 (10): 313- 320.
doi: 10.19678/j.issn.1000-3428.0065868
|
|
LI Y G , LI G L , ZHANG K , et al. Design of Internet of Things framework based on artificial intelligence and edge agents. Computer Engineering, 2023, 49 (10): 313- 320.
doi: 10.19678/j.issn.1000-3428.0065868
|
6 |
LIU X , YOO C , XING F , et al. Deep unsupervised domain adaptation: a review of recent advances and perspectives. APSIPA Transactions on Signal and Information Processing, 2022, 11 (1): 92- 96.
doi: 10.48550/arXiv.2208.07422
|
7 |
KOUW W M , LOOG M . A review of domain adaptation without target labels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43 (3): 766- 785.
|
8 |
WANG M , DENG W H . Deep visual domain adaptation: a survey. Neurocomputing, 2018, 312, 135- 153.
|
9 |
ZHANG Y F , KANG B Y , HOOI B , et al. Deep long-tailed learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 10795- 10816.
|
10 |
YANG L , JIANG H , SONG Q , et al. A survey on long-tailed visual recognition. International Journal of Computer Vision, 2022, 130 (7): 1837- 1872.
|
11 |
袁佳伟, 宋庆增, 王雪纯, 等. 边缘计算设备的性能功耗测量与分析. 计算机工程, 2021, 47 (2): 233-238, 245.
doi: 10.19678/j.issn.1000-3428.0056183
|
|
YUAN J W , SONG Q Z , WANG X C , et al. Performance and power consumption measurement and analysis of edge computing devices. Computer Engineering, 2021, 47 (2): 233-238, 245.
doi: 10.19678/j.issn.1000-3428.0056183
|
12 |
|
13 |
WANG Q, FINK O, VAN GOOL L, et al. Continual test-time domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 7201-7211.
|
14 |
DABLAIN D , KRAWCZYK B , CHAWLA N V . DeepSMOTE: fusing deep learning and SMOTE for imbalanced data. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34 (9): 6390- 6404.
|
15 |
|
16 |
PARK S, LIM J, JEON Y H, et al. Influence-balanced loss for imbalanced visual classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 735-744.
|
17 |
CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 9268-9277.
|
18 |
LI M K, CHEUNG Y M, LU Y. Long-tailed visual recognition via Gaussian clouded logit adjustment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 6929-6938.
|
19 |
|
20 |
ALSHAMMARI S, WANG Y X, RAMANAN D, et al. Long-tailed recognition via weight balancing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 6897-6907.
|
21 |
ZHONG Z S, CUI J Q, LIU S, et al. Improving calibration for long-tailed recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 16489-16498.
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
23 |
ZHANG C, PAN T Y, LI Y, et al. Mosaicos: a simple and effective use of object-centric images for long-tailed object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 417-427.
|
24 |
WANG J F, LUKASIEWICZ T, HU X L, et al. RSG: a simple but effective module for learning imbalanced datasets[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 3784-3793.
|
25 |
HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//Proceedings of International Conference on Intelligent Computing. Berlin, Germany: Springer, 2005: 878-887.
|
26 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
27 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-12-18]. https://arxiv.org/abs/2010.11929v2.
|
28 |
HOWARD A, SANDLER M, CHU B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1314-1324.
|
29 |
PESCHL M F , FUNDNEIDER T . Why space matters for collaborative innovation networks: on designing enabling spaces for collaborative knowledge creation. International Journal of Organisational Design and Engineering, 2014, 3 (3/4): 358- 391.
|
30 |
|