1 |
ZHUANG W H, YE Q, LYU F, et al. SDN/NFV-empowered future IoV with enhanced communication, computing, and caching. Proceedings of the IEEE, 2020, 108(2): 274- 291.
doi: 10.1109/JPROC.2019.2951169
|
2 |
江恺, 曹越, 周欢, 等. 车联网边缘智能: 概念、架构、问题、实施和展望. 物联网学报, 2023, 7(1): 37- 48.
|
|
JIANG K, CAO Y, ZHOU H, et al. Edge intelligence empowered Internet of Vehicles: concept, framework, issues, implementation, and prospect. Chinese Journal on Internet of Things, 2023, 7(1): 37- 48.
|
3 |
于晶, 鲁凌云, 李翔. 车联网中基于DDQN的边云协作任务卸载机制. 计算机工程, 2022, 48(12): 156- 164.
doi: 10.19678/j.issn.1000-3428.0063739
|
|
YU J, LU L Y, LI X. Edge-cloud collaborative task offloading mechanism based on DDQN in vehicular networks. Computer Engineering, 2022, 48(12): 156- 164.
doi: 10.19678/j.issn.1000-3428.0063739
|
4 |
CAO B, SUN Z H, ZHANG J T, et al. Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3832- 3840.
doi: 10.1109/TITS.2020.3048844
|
5 |
LI J L, SHI W S, WU H Q, et al. Cost-aware dynamic SFC mapping and scheduling in SDN/NFV-enabled space-air-ground-integrated networks for Internet of vehicles. IEEE Internet of Things Journal, 2022, 9(8): 5824- 5838.
doi: 10.1109/JIOT.2021.3058250
|
6 |
QIU Y, LIANG J B, LEUNG V C M, et al. Online reliability-enhanced virtual network services provisioning in fault-prone mobile edge cloud. IEEE Transactions on Wireless Communications, 2022, 21(9): 7299- 7313.
doi: 10.1109/TWC.2022.3157606
|
7 |
GUO J X, DING X J, WU W L. Reliable traffic monitoring mechanisms based on blockchain in vehicular networks. IEEE Transactions on Reliability, 2022, 71(3): 1219- 1229.
doi: 10.1109/TR.2020.3046556
|
8 |
LI B, DENG X H, DENG Y Q. Mobile-edge computing-based delay minimization controller placement in SDN-IoV. Computer Networks, 2021, 193, 108049.
doi: 10.1016/j.comnet.2021.108049
|
9 |
LI B, DENG X H, CHEN X C, et al. MEC-based dynamic controller placement in SD-IoV: a deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10044- 10058.
doi: 10.1109/TVT.2022.3182048
|
10 |
LIU Y C, LU H, LI X, et al. Dynamic service function chain orchestration for NFV/MEC-enabled IoT networks: a deep reinforcement learning approach. IEEE Internet of Things Journal, 2021, 8(9): 7450- 7465.
doi: 10.1109/JIOT.2020.3038793
|
11 |
ZHANG Q X, LIU F M, ZENG C B. Online adaptive interference-aware VNF deployment and migration for 5G network slice. IEEE/ACM Transactions on Networking, 2021, 29(5): 2115- 2128.
doi: 10.1109/TNET.2021.3080197
|
12 |
TRUONG-HUU T, MURALI MOHAN P, GURUSAMY M. Service chain embedding for diversified 5G slices with virtual network function sharing. IEEE Communications Letters, 2019, 23(5): 826- 829.
doi: 10.1109/LCOMM.2019.2900888
|
13 |
|
14 |
HUANG M T, LIANG W F, SHEN X J, et al. Reliability-aware virtualized network function services provisioning in mobile edge computing. IEEE Transactions on Mobile Computing, 2020, 19(11): 2699- 2713.
doi: 10.1109/TMC.2019.2927214
|
15 |
LIANG W F, MA Y, XU W Z, et al. Request reliability augmentation with service function chain requirements in mobile edge computing. IEEE Transactions on Mobile Computing, 2022, 21(12): 4541- 4554.
doi: 10.1109/TMC.2021.3081681
|
16 |
THIRUVASAGAM P K, CHAKRABORTY A, MATHEW A, et al. Reliable placement of service function chains and virtual monitoring functions with minimal cost in softwarized 5G networks. IEEE Transactions on Network and Service Management, 2021, 18(2): 1491- 1507.
doi: 10.1109/TNSM.2021.3056917
|
17 |
YANG L, JIA J Z, LIN H C, et al. Reliable dynamic service chain scheduling in 5G networks. IEEE Transactions on Mobile Computing, 2023, 22(8): 4898- 4911.
doi: 10.1109/TMC.2022.3157312
|
18 |
HAZARIKA B, SINGH K, BISWAS S, et al. DRL-based resource allocation for computation offloading in IoV networks. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8027- 8038.
doi: 10.1109/TII.2022.3168292
|
19 |
LI G L, ZHOU H C, FENG B H, et al. Efficient provision of service function chains in overlay networks using reinforcement learning. IEEE Transactions on Cloud Computing, 2022, 10(1): 383- 395.
doi: 10.1109/TCC.2019.2961093
|
20 |
BAI H N, ZHANG Y, ZHANG Z Y, et al. Latency equalization policy of end-to-end network slicing based on reinforcement learning. IEEE Transactions on Network and Service Management, 2023, 20(1): 88- 103.
doi: 10.1109/TNSM.2022.3210012
|
21 |
LI B J, LU W, ZHU Z Q. Deep-NFVOrch: leveraging deep reinforcement learning to achieve adaptive VNF service chaining in DCI-EONs. Journal of Optical Communications and Networking, 2020, 12(1): 18- 27.
doi: 10.1364/JOCN.12.000A18
|
22 |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 2014, 4, 3104- 3112.
|
23 |
CHIEN W C, WENG H Y, LAI C F, et al. A SFC-based access point switching mechanism for software-defined wireless network in IoV. Future Generation Computer Systems, 2019, 98, 577- 585.
doi: 10.1016/j.future.2019.01.030
|
24 |
徐泽汐, 庄雷, 张坤丽, 等. 基于知识图谱的服务功能链在线部署算法. 通信学报, 2022, 43(8): 41- 51.
|
|
XU Z X, ZHUANG L, ZHANG K L, et al. Online placement algorithm of service function chain based on knowledge graph. Journal on Communications, 2022, 43(8): 41- 51.
|
25 |
BÉKÉSI J, DÓSA G, GALAMBOS G. A first fit type algorithm for the coupled task scheduling problem with unit execution time and two exact delays. European Journal of Operational Research, 2022, 297(3): 844- 852.
doi: 10.1016/j.ejor.2021.06.002
|
26 |
MAGOULA L, BARMPOUNAKIS S, STAVRAKAKIS I, et al. A genetic algorithm approach for service function chain placement in 5G and beyond, virtualized edge networks. Computer Networks, 2021, 195, 108157.
doi: 10.1016/j.comnet.2021.108157
|