计算机工程 ›› 2019, Vol. 45 ›› Issue (10): 293-300.doi: 10.19678/j.issn.1000-3428.0052714

• 开发研究与工程应用 • 上一篇    下一篇

虚假商品评论识别的研究与进展

张璐   

  1. 南京财经大学 信息工程学院, 南京 210046
  • 收稿日期:2018-09-20 修回日期:2018-10-22 出版日期:2019-10-15 发布日期:2018-10-28
  • 作者简介:张璐(1983-),男,讲师、博士,主研方向为数据挖掘、网络空间安全。
  • 基金项目:
    国家重点研发计划(2018YFD0401404);国家自然科学基金(71801123,91646204)。

Research and Progress of Fake Product Review Identification

ZHANG Lu   

  1. College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
  • Received:2018-09-20 Revised:2018-10-22 Online:2019-10-15 Published:2018-10-28

摘要: 受经济利益驱使,大量恶意用户发布包含不实内容的虚假评论以影响用户的购买决策,从而提高自身商品的销售业绩并打压竞争对手,严重扰乱电子商务运营秩序。为此,介绍虚假评论识别的研究成果,包括虚假评论内容、发布者及虚假评论者群组的识别,对识别过程所使用的特征及检测方法进行对比分析,并给出虚假评论识别效果的评价方式和指标。在此基础上,对未来虚假评论识别研究工作进行探讨和展望。

关键词: 虚假评论, 恶意用户, 群组检测, 机器学习, 评价指标

Abstract: Driven by economic interests,a large number of malicious users publish false comments containing untrue content to influence users' purchasing decisions,thereby promoting the sale of their own products or suppressing competitors,seriously disrupting the order of e-commerce operations.Therefore,the paper introduces fake commodity reviews research result,including the identification of false reviews,publishers,and groups of fake reviewers,analyzes and compares the features and detection methods used,and gives the evaluation method and indicators of false comment recognition effect.On this basis,the future research on false comment recognition is discussed and prospected.

Key words: fake review, malicious users, group detection, machine learning, evaluation indicator

中图分类号: