[1] 李南忘.基于数据挖掘方法通过简约参数建立水质异常检测及污染物识别系统的研究[D].上海:华东师范大学, 2016. LI N W. Study on the detection of water quality anomaly and classification of contaminants based on simple water quality parameters and data mining method[D].Shanghai:East China Normal University, 2016.(in Chinese) [2] 黄训华,张凤斌,樊好义,等.基于多模态对抗学习的无监督时间序列异常检测[J].计算机研究与发展, 2021, 58(8):1655-1667. HUANG X H, ZHANG F B, FAN H Y, et al. Multimodal adversarial learning based unsupervised time series anomaly detection[J]. Journal of Computer Research and Development, 2021, 58(8):1655-1667.(in Chinese) [3] QIAO Y, CUI X H, JIN P, et al. Fast outlier detection for high-dimensional data of wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2020, 16(10):155014772096383. [4] HAWKINS D. Identification of outliers[M]. London, England:Chapman and Hall, 1980. [5] SHUKLA D S, PANDEY A C, KULHARI A. Outlier detection:a survey on techniques of WSNs involving event and error based outliers[C]//Proceedings of the Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH). Washington D. C., USA:IEEE Press, 2014:113-116. [6] 王禹博,陈利锋,许卫霞.结合多解码器与两阶段通道选择的异常检测方法[J].计算机工程, 2023, 49(3):37-48. WANG Y B, CHEN L F, XU W X. Anomaly detection method combining with multi-decoder and two-stage channel selection[J]. Computer Engineering, 2023, 49(3):37-48.(in Chinese) [7] LU W N, CHENG Y, XIAO C, et al. Unsupervised sequential outlier detection with deep architectures[J]. IEEE Transactions on Image Processing, 2017, 26(9):4321-4330. [8] CHAKRABORTY D, NARAYANAN V, GHOSH A. Integration of deep feature extraction and ensemble learning for outlier detection[J]. Pattern Recognition, 2019, 89:161-171. [9] 柳月强,张建锋,祝麒翔,等.基于时空相关性的多传感器数据异常检测[J].计算机应用与软件, 2020, 37(10):85-90. LIU Y Q, ZHANG J F, ZHU Q X, et al. Outliers detection of multi-sensor data based on spatial-temporal correlation[J]. Computer Applications and Software, 2020, 37(10):85-90.(in Chinese) [10] YEPMO V, SMITS G, PIVERT O. Anomaly explanation:a review[J]. Data&Knowledge Engineering, 2022, 137:101946. [11] 汤佳欣,陈阳,周孟莹,等.深度学习方法在兴趣点推荐中的应用研究综述[J].计算机工程, 2022, 48(1):12-23, 42. TANG J X, CHEN Y, ZHOU M Y, et al. A survey of studies on deep learning applications in POI recommendation[J]. Computer Engineering, 2022, 48(1):12-23, 42.(in Chinese) [12] 张蕾,崔勇,刘静,等.机器学习在网络空间安全研究中的应用[J].计算机学报, 2018, 41(9):1943-1975. ZHANG L, CUI Y, LIU J, et al. Application of machine learning in cyberspace security research[J]. Chinese Journal of Computers, 2018, 41(9):1943-1975.(in Chinese) [13] 崔景洋,陈振国,田立勤,等.基于机器学习的用户与实体行为分析技术综述[J].计算机工程, 2022, 48(2):10-24. CUI J Y, CHEN Z G, TIAN L Q, et al. Overview of user and entity behavior analytics technology based on machine learning[J]. Computer Engineering, 2022, 48(2):10-24.(in Chinese) [14] 袁非牛,章琳,史劲亭,等.自编码神经网络理论及应用综述[J].计算机学报, 2019, 42(1):203-230. YUAN F N, ZHANG L, SHI J T, et al. Theories and applications of auto-encoder neural networks:a literature survey[J]. Chinese Journal of Computers, 2019, 42(1):203-230.(in Chinese) [15] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323:533-536. [16] 马金.基于深度神经网络的序列异常检测研究[D].成都:电子科技大学, 2018. MA J. Research on sequential anomaly detection based on deep neural network[D].Chengdu:University of Electronic Science and Technology of China, 2018.(in Chinese) [17] 孟恒宇,李元祥.基于Transformer重建的时序数据异常检测与关系提取[J].计算机工程, 2021, 47(2):69-76. MENG H Y, LI Y X. Anomaly detection and relation extraction for time series data based on Transformer reconstruction[J]. Computer Engineering, 2021, 47(2):69-76.(in Chinese) [18] 纪守领,李进锋,杜天宇,等.机器学习模型可解释性方法、应用与安全研究综述[J].计算机研究与发展, 2019, 56(10):2071-2096. JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10):2071-2096.(in Chinese) [19] ADADI A, BERRADA M. Peeking inside the black-box:a survey on explainable artificial intelligence (XAI)[J]. IEEE Access, 2018, 6:52138-52160. [20] 苏炯铭,刘鸿福,项凤涛,等.深度神经网络解释方法综述[J].计算机工程, 2020, 46(9):1-15. SU J M, LIU H F, XIANG F T, et al. Survey of interpretation methods for deep neural networks[J]. Computer Engineering, 2020, 46(9):1-15.(in Chinese) [21] MILLER T. Explanation in artificial intelligence:insights from the social sciences[EB/OL].[2023-04-03]. https://arxiv.org/pdf/1706.07269. [22] AAS K, JULLUM M, LØLAND A. Explaining individual predictions when features are dependent:more accurate approximations to Shapley values[J]. Artificial Intelligence, 2021, 298:103502. [23] PETCH J, DI S, NELSON W. Opening the black box:the promise and limitations of explainable machine learning in cardiology[J]. The Canadian Journal of Cardiology, 2022, 38(2):204-213. [24] LUNDBERG S, LEE S I. A unified approach to interpreting model predictions[EB/OL].[2023-04-03]. https://arxiv.org/pdf/1705.07874. [25] ANTWARG L, MILLER R M, SHAPIRA B, et al. Explaining anomalies detected by autoencoders using Shapley Additive Explanations[J]. Expert Systems with Applications, 2021, 186:115736. |