[1] WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology:Official Journal of the International Federation of Clinical Neurophysiology, 2002, 113(6):767-791. [2] SAHA S, MAMUN K A, AHMED K, et al. Progress in brain computer interface:challenges and opportunities[J]. Frontiers in Systems Neuroscience, 2021, 15:578875. [3] ZABCIKOVA M, KOUDELKOVA Z, JASEK R, et al. Recent advances and current trends in brain-computer interface research and their applications[J]. International Journal of Developmental Neuroscience, 2022, 82(2):107-123. [4] MAISELI B, ABDALLA A T, MASSAWE L V, et al. Brain-computer interface:trend, challenges, and threats[J]. Brain Informatics, 2023, 10(1):20. [5] SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7:424-442. [6] STEVENSON I H, KORDING K P. How advances in neural recording affect data analysis[J]. Nature Neuroscience, 2011, 14:139-142. [7] BENSMAIA S J, MILLER L E. Restoring sensorimotor function through intracortical interfaces:progress and looming challenges[J]. Nature Reviews Neuroscience, 2014, 15:313-325. [8] ZHAO Z P, NIE C, JIANG C T, et al. Modulating brain activity with invasive brain-computer interface:a narrative review[J]. Brain Sciences, 2023, 13(1):134. [9] SHENOY K V, CARMENA J M. Combining decoder design and neural adaptation in brain-machine interfaces[J]. Neuron, 2014, 84(4):665-680. [10] FLESHER S N, COLLINGER J L, FOLDES S T, et al. Intracortical microstimulation of human somatosensory cortex[J]. Science Translational Medicine, 2016, 8(361):361ra141. [11] STAVISKY S D, KAO J C, NUYUJUKIAN P, et al. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes[J]. Journal of Neural Engineering, 2015, 12(3):036009. [12] NICOLELIS M A L, DIMITROV D, CARMENA J M, et al. Chronic, multisite, multielectrode recordings in macaque monkeys[J]. Proceedings of the National Academy of Sciences, 2003, 100(19):11041-11046. [13] CARMENA J M. Advances in neuroprosthetic learning and control[J]. PLoS Biology, 2013, 11(5):e1001561. [14] SIMERAL J D, KIM S P, BLACK M J, et al. Neural control of cursor trajectory and click by a human with tetraplegia 1 000 days after implant of an intracortical microelectrode array[J]. Journal of Neural Engineering, 2011, 8(2):025027. [15] COLLINGER J L, WODLINGER B, DOWNEY J E, et al. High-performance neuroprosthetic control by an individual with tetraplegia[J]. Lancet, 2013, 381(9866):557-564. [16] HOCHBERG L R, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012, 485:372-375. [17] WILLETT F R, AVANSINO D T, HOCHBERG L R, et al. High-performance brain-to-text communication via handwriting[J]. Nature, 2021, 593:249-254. [18] GILJA V, PANDARINATH C, BLABE C H, et al. Clinical translation of a high-performance neural prosthesis[J]. Nature Medicine, 2015, 21:1142-1145. [19] PEKSA J, MAMCHUR D. State-of-the-art on brain-computer interface technology[J]. Sensors, 2023, 23(13):6001. [20] HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 442:164-171. [21] HU K J, JAMALI M, MOSES Z B, et al. Decoding unconstrained arm movements in Primates using high-density electrocorticography signals for brain-machine interface use[J]. Scientific Reports, 2018, 8:10583. [22] LEONARD M K, GWILLIAMS L, SELLERS K K, et al. Large-scale single-neuron speech sound encoding across the depth of human cortex[J]. Nature, 2024, 626:593-602. [23] KHANNA A R, MUNOZ W, KIM Y J, et al. Single-neuronal elements of speech production in humans[J]. Nature, 2024, 626:603-610. [24] WILLETT F R, KUNZ E M, FAN C F, et al. A high-performance speech neuroprosthesis[J]. Nature, 2023, 620:1031-1036. [25] ANGRICK M, OTTENHOFF M C, DIENER L, et al. Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity[J]. Communications Biology, 2021, 4:1055. [26] METZGER S L, LIU J R, MOSES D A, et al. Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis[J]. Nature Communications, 2022, 13:6510. [27] SCHOLTEN K, MENG E. Materials for microfabricated implantable devices:a review[J]. Lab on a Chip, 2015, 15(22):4256-4272. [28] CHUNG J E, SELLERS K K, LEONARD M K, et al. High-density single-unit human cortical recordings using the Neuropixels probe[J]. Neuron, 2022, 110(15):2409-2421. [29] CHESTEK C A, GILJA V, NUYUJUKIAN P, et al. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex[J]. Journal of Neural Engineering, 2011, 8(4):045005. [30] SCHNEIDER S, LEE J H, MATHIS M W. Learnable latent embeddings for joint behavioural and neural analysis[J]. Nature, 2023, 617:360-368. [31] URAI A E, DOIRON B, LEIFER A M, et al. Large-scale neural recordings call for new insights to link brain and behavior[J]. Nature Neuroscience, 2022, 25:11-19. [32] REY H G, PEDREIRA C, QUIROGA R Q. Past, present and future of spike sorting techniques[J]. Brain Research Bulletin, 2015, 119:106-117. [33] LEWICKI M S. A review of methods for spike sorting:the detection and classification of neural action potentials[J]. Network, 1998, 9(4):R53. [34] EINEVOLL G T, FRANKE F, HAGEN E, et al. Towards reliable spike-train recordings from thousands of neurons with multielectrodes[J]. Current Opinion in Neurobiology, 2012, 22(1):11-17. [35] ROSSANT C, KADIR S N, GOODMAN D F M, et al. Spike sorting for large, dense electrode arrays[J]. Nature Neuroscience, 2016, 19:634-641. [36] LEFEBVRE B, YGER P, MARRE O. Recent progress in multi-electrode spike sorting methods[J]. Journal of Physiology-Paris, 2016, 110(4):327-335. [37] GERSTEIN G L, CLARK W A. Simultaneous studies of firing patterns in several neurons[J]. Science, 1964, 143(3612):1325-1327. [38] JUN J J, STEINMETZ N A, SIEGLE J H, et al. Fully integrated silicon probes for high-density recording of neural activity[J]. Nature, 2017, 551:232-236. [39] STEINMETZ N A, AYDIN C, LEBEDEVA A, et al. Neuropixels 2.0:a miniaturized high-density probe for stable, long-term brain recordings[J]. Science, 2021, 372(6539):ebf4588. [40] PAULK A C, KFIR Y, KHANNA A R, et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex[J]. Nature Neuroscience, 2022, 25:252-263. [41] BOD R B, ROKAI J, MESZÉNA D, et al. From end to end:gaining, sorting, and employing high-density neural single unit recordings[J]. Frontiers in Neuroinformatics, 2022, 16:851024. [42] ZHANG T, AZGHADI M R, LAMMIE C, et al. Spike sorting algorithms and their efficient hardware implementation:a comprehensive survey[EB/OL].[2023-11-12]. https://www.researchgate.net/publication/369576949_Spike_sorting_algorithms_and_their_efficient_hardware_implementation_A_comprehensive_survey. [43] CARLSON D, CARIN L. Continuing progress of spike sorting in the era of big data[J]. Current Opinion in Neurobiology, 2019, 55:90-96. [44] PACHITARIU M, STEINMETZ N, KADIR S, et al. Fast and accurate spike sorting of high-channel count probes with KiloSort[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2016:4455-4463. [45] YGER P, SPAMPINATO G L, ESPOSITO E, et al. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo[J]. eLife, 2018, 7:e34518. [46] PILLOW J W, SHLENS J, CHICHILNISKY E J, et al. A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings[J]. PLoS One, 2013, 8(5):e62123. [47] BUCCINO A P, GARCIA S, YGER P. Spike sorting:new trends and challenges of the era of high-density probes[J]. Progress in Biomedical Engineering, 2022, 4(2):022005. [48] MAGLAND J, JUN J J, LOVERO E, et al. SpikeForest, reproducible Web-facing ground-truth validation of automated neural spike sorters[J]. eLife, 2020, 9:e55167. [49] STEINMETZ N A, KOCH C, HARRIS K D, et al. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes[J]. Current Opinion in Neurobiology, 2018, 50:92-100. [50] DONOGHUE J P. Connecting cortex to machines:recent advances in brain interfaces[J]. Nature Neuroscience, 2002, 5:1085-1088. [51] QUIROGA R Q, PANZERI S. Extracting information from neuronal populations:information theory and decoding approaches[J]. Nature Reviews Neuroscience, 2009, 10:173-185. [52] ZHANG Z, CONSTANDINOU T G. Firing-rate-modulated spike detection and neural decoding co-design[J]. Journal of Neural Engineering, 2023, 20(3):036003. [53] KRIEGESKORTE N, DOUGLAS P K. Cognitive computational neuroscience[J]. Nature Neuroscience, 2018, 21:1148-1160. [54] SUN H Q, QI Y, WANG Y M. Delving into temporal-spectral connections in spike-LFP decoding by transformer networks[C]//Proceedings of International Workshop on Human Brain and Artificial Intelligence. Berlin, Germany:Springer, 2023:15-29. [55] ZHOU D, WEI X X. Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:7234-7247. [56] MARBLESTONE A H, WAYNE G, KORDING K P. Toward an integration of deep learning and neuroscience[J]. Frontiers in Computational Neuroscience, 2016, 10:94. [57] WOOD E, FELLOWS M, DONOGHUE J R, et al. Automatic spike sorting for neural decoding[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D.C., USA:IEEE Press, 2004:4009-4012. [58] BUZSÁKI G, ANASTASSIOU C A, KOCH C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[J]. Nature Reviews Neuroscience, 2012, 13:407-420. [59] RVBEL O, TRITT A, LY R, et al. The neurodata without borders ecosystem for neurophysiological data science[J]. eLife, 2022, 11:e78362. [60] TEETERS J L, GODFREY K, YOUNG R, et al. Neurodata without borders:creating a common data format for neurophysiology[J]. Neuron, 2015, 88(4):629-634. [61] MARTONE M, GERKIN R, MOUCEK R, et al. NIX-neuroscience information exchange format[EB/OL].[2023-11-12]. https://www.semanticscholar.org/paper/NIX-% E2%80%93-Neuroscience-information-exchange-format-Martone-Gerkin/0f08d9b288ba99a67ac55898e500dd0 e13f1e2c8. [62] MUKHOPADHYAY S, RAY G C. A new interpretation of nonlinear energy operator and its efficacy in spike detection[J]. IEEE Transactions on Biomedical Engineering, 1998, 45(2):180-187. [63] KIM K H, KIM S J. Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(10):1406-1411. [64] CHOI J H, JUNG H K, KIM T. A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(4):738-746. [65] HULATA E, SEGEV R, BEN-JACOB E. A method for spike sorting and detection based on wavelet packets and Shannon's mutual information[J]. Journal of Neuroscience Methods, 2002, 117(1):1-12. [66] KIM K H, KIM S J. A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(8):999-1011. [67] NENADIC Z, BURDICK J W. Spike detection using the continuous wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(1):74-87. [68] QUIROGA R Q, NADASDY Z, BEN-SHAUL Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering[J]. Neural Computation, 2004, 16(8):1661-1687. [69] BIFFI E, GHEZZI D, PEDROCCHI A, et al. Spike detection algorithm improvement, spike waveforms projections with PCA and hierarchical classification[EB/OL].[2023-11-12]. https://www.semanticscholar.org/paper/Spike-detection-algorithm-improvement%2C-spike-with-Biffi-Ghezzi/9945d85d27125b62d52c6ff78c059c9a30ba5dc3. [70] VARGAS-IRWIN C, DONOGHUE J P. Automated spike sorting using density grid contour clustering and subtractive waveform decomposition[J]. Journal of Neuroscience Methods, 2007, 164(1):1-18. [71] HILL E S, MOORE-KOCHLACS C, VASIREDDI S K, et al. Validation of independent component analysis for rapid spike sorting of optical recording data[J]. Journal of Neurophysiology, 2010, 104(6):3721-3731. [72] JÄCKEL D, FREY U, FISCELLA M, et al. Applicability of independent component analysis on high-density microelectrode array recordings[J]. Journal of Neurophysiology, 2012, 108(1):334-348. [73] MAMLOUK A M, SHARP H, MENNE K M L, et al. Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations[J]. Neurocomputing, 2005, 65:275-282. [74] TAKAHASHI S, ANZAI Y, SAKURAI Y. A new approach to spike sorting for multi-neuronal activities recorded with a tetrode-how ICA can be practical[J]. Neuroscience Research, 2003, 46(3):265-272. [75] YANG Y N, MASON A J. Frequency band separability feature extraction method with weighted Haar wavelet implementation for implantable spike sorting[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(6):530-538. [76] CHAH E, HOK V, DELLA-CHIESA A, et al. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering[J]. Journal of Neural Engineering, 2011, 8(1):016006. [77] DAI M, LUO J. A robust method for spike sorting with overlap decomposition[J]. Journal of Computers, 2014, 9(3):733-740. [78] HUANG L B, GAN L, LING B W K. A unified optimization model of feature extraction and clustering for spike sorting[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29:750-759. [79] NGUYEN T, KHOSRAVI A, CREIGHTON D, et al. Spike sorting using locality preserving projection with gap statistics and landmark-based spectral clustering[J]. Journal of Neuroscience Methods, 2014, 238:43-53. [80] HUANG L B, LING B W K, ZENG Y, et al. Spike sorting based on low-rank and sparse representation[C]//Proceedings of IEEE International Conference on Multimedia and Expo (ICME).Washington D.C., USA:IEEE Press, 2020:1-6. [81] CHUNG J E, MAGLAND J F, BARNETT A H, et al. A fully automated approach to spike sorting[J]. Neuron, 2017, 95(6):1381-1394. [82] MARRE O, AMODEI D, DESHMUKH N, et al. Mapping a complete neural population in the retina[J]. Journal of Neuroscience, 2012, 32(43):14859-14873. [83] QUIROGA R Q. Concept cells:the building blocks of declarative memory functions[J]. Nature Reviews Neuroscience, 2012, 13:587-597. [84] HILL D N, MEHTA S B, KLEINFELD D. Quality metrics to accompany spike sorting of extracellular signals[J]. Journal of Neuroscience, 2011, 31(24):8699-8705. [85] KADIR S N, GOODMAN D F M, HARRIS K D. High-dimensional cluster analysis with the masked EM algorithm[J]. Neural Computation, 2014, 26(11):2379-2394. [86] EKANADHAM C, TRANCHINA D, SIMONCELLI E P. A unified framework and method for automatic neural spike identification[J]. Journal of Neuroscience Methods, 2014, 222:47-55. [87] FRANKE F, NATORA M, BOUCSEIN C, et al. An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes[J]. Journal of Computational Neuroscience, 2010, 29(1):127-148. [88] PACHITARIU M, STEINMETZ N, KADIR S, et al. KiloSort:realtime spike-sorting for extracellular electrophysiology with hundreds of channels[EB/OL].[2023-11-12]. https://www.semanticscholar.org/paper/Kilosort%3A-realtime-spike-sorting-for-extracellular-Pachitariu-Steinmetz/6977fc2177b7d3b987ce29d7f97e9bbd1a92cc2a. [89] WOOD F, BLACK M J, VARGAS-IRWIN C, et al. On the variability of manual spike sorting[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):912-918. [90] HARRIS K D, HENZE D A, CSICSVARI J, et al. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements[J]. Journal of Neurophysiology, 2000, 84(1):401-414. [91] PEDREIRA C, MARTINEZ J, ISON M J, et al. How many neurons can we see with current spike sorting algorithms?[J]. Journal of Neuroscience Methods, 2012, 211(1):58-65. [92] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455. [93] QUIAN Q R. What is the real shape of extracellular spikes?[J]. Journal of Neuroscience Methods, 2009, 177(1):194-198. [94] BODENSTEIN G, PRAETORIUS H M. Feature extraction from the electroencephalogram by adaptive segmentation[J]. Proceedings of the IEEE, 1977, 65(5):642-652. [95] GUYTON A C, HALL J E. Textbook of medical physiology[M]. Philadelphia,USA:Elsevier Saunders, 2006. [96] MARAGOS P, KAISER J F, QUATIERI T F. On amplitude and frequency demodulation using energy operators[J]. IEEE Transactions on Signal Processing, 1993, 41(4):1532-1550. [97] KAISER J F. On a simple algorithm to calculate the‘energy'of a signal[C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Washington D.C., USA:IEEE Press, 1990:381-384. [98] KAISER J F. On Teager's energy algorithm and its generalization to continuous signals[C]//Proceedings the 4th IEEE Digital Signal Processing Workshop. Washington D.C., USA:IEEE Press, 1990:1-12. [99] ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis[J]. IEEE Transactions on Computers, 1971, C-20(5):562-569. [100] DAUBECHIES I. Ten lectures on wavelets[M]. Philadelphia, USA:Society for Industrial and Applied Mathematics, 1992. |