1 |
林志达, 吴石松. Dockers容器在人工智能研发平台中的关键技术研究. 自动化与仪器仪表, 2020,(6): 192- 196.
|
|
LIN Z D, WU S S. Research on key technologies of Dockers container in artificial intelligence research and development platform. Automation & Instrumentation, 2020,(6): 192- 196.
|
2 |
罗晟皓. 基于Docker和Kubernetes的深度学习容器云平台的设计与实现[D]. 北京: 北京交通大学, 2019.
|
|
LUO S H. Design and implementation of deep learning container cloud platform based on Docker and Kubernetes[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
3 |
|
4 |
|
5 |
THINAKARAN P, GUNASEKARAN J R, SHARMA B, et al. Kube-knots: resource harvesting through dynamic container orchestration in GPU-based datacenters[C]//Proceedings of IEEE International Conference on Cluster Computing. Washington D. C., USA: IEEE Press, 2019: 1-13.
|
6 |
WANG S Q, GONZALEZ O J, ZHOU X B, et al. An efficient and non-intrusive GPU scheduling framework for deep learning training systems[C]//Proceedings of International Conference on High Performance Computing. New York, USA: ACM Press, 2020: 1-13.
|
7 |
GAO C, REN R, CAI H M. GAI: a centralized tree-based scheduler for machine learning workload in large shared clusters[M]. [S. 1.]: Springer International Publishing, 2018.
|
8 |
HUA Q, QIAN S Y, YANG D Y, et al. Qore-DL: a QoS-aware joint optimization framework for distributed deep learning training. Journal of Systems Architecture, 2022, 130, 102640.
doi: 10.1016/j.sysarc.2022.102640
|
9 |
LE T N, SUN X, CHOWDHURY M, et al. AlloX: compute allocation in hybrid clusters[C]//Proceedings of the 15th European Conference on Computer Systems. Berlin, Germany: Springer, 2020: 1-16.
|
10 |
SONG S B, DENG L L, GONG J, et al. Gaia scheduler: a kubernetes-based scheduler framework[C]//Proceedings of International Conference on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications. Washington D. C., USA: IEEE Press, 2018: 252-259.
|
11 |
ALBAHAR H, DONGARE S, DU Y L, et al. SchedTune: a heterogeneity-aware GPU scheduler for deep learning[C]//Proceedings of the 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing. Washington D. C., USA: IEEE Press, 2022: 695-705.
|
12 |
朱紫钰, 汤小春, 赵全. 面向CPU-GPU集群的分布式机器学习资源调度框架研究. 西北工业大学学报, 2021, 39(3): 529- 538.
|
|
ZHU Z Y, TANG X C, ZHAO Q. A unified schedule policy of distributed machine learning framework for CPU-GPU cluster. Journal of Northwestern Polytechnical University, 2021, 39(3): 529- 538.
|
13 |
李勋章, 王如月, 莫静容. 改进的遗传算法在云资源调度上的应用. 桂林航天工业学院学报, 2022, 27(1): 9- 13.
|
|
LI X Z, WANG R Y, MO J R. Application of improved genetic algorithm in cloud resource scheduling. Journal of Guilin University of Aerospace Technology, 2022, 27(1): 9- 13.
|
14 |
ZHANG F, CHEN Z, ZHANG C Y, et al. An efficient parallel secure machine learning framework on GPUs. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(9): 2262- 2276.
doi: 10.1109/TPDS.2021.3059108
|
15 |
SHEN W F, LIU Z S, TAN Y J, et al. KubeGPU: efficient sharing and isolation mechanisms for GPU resource management in container cloud. The Journal of Supercomputing, 2023, 79(1): 591- 625.
doi: 10.1007/s11227-022-04682-2
|
16 |
ZHU X R, GONG L, ZHU Z W, et al. Vapor: a GPU sharing scheduler with communication and computation pipeline for distributed deep learning[C]//Proceedings of IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking. New York, USA: ACM Press, 2021: 108-116.
|
17 |
CAO Y P, WANG H F. A task scheduling scheme for preventing temperature hotspot on GPU heterogeneous cluster[C]//Proceedings of International Conference on Green Informatics. Washington D. C., USA: IEEE Press, 2017: 117-121.
|
18 |
胡程鹏, 薛涛. 基于遗传算法的Kubernetes资源调度算法. 计算机系统应用, 2021, 30(9): 152- 160.
|
|
HU C P, XUE T. Kubernetes resource scheduling algorithm based on genetic algorithm. Computer Systems & Applications, 2021, 30(9): 152- 160.
|
19 |
王浩, 王浩枫. 面向CPUs-GPUs系统的OpenCL任务调度框架. 计算机工程与设计, 2022, 43(7): 1955- 1963.
|
|
WANG H, WANG H F. Scheduling framework for OpenCL programs on CPUs-GPUs heterogeneous platforms. Computer Engineering and Design, 2022, 43(7): 1955- 1963.
|
20 |
TANG X Y, FU Z J. CPU-GPU utilization aware energy-efficient scheduling algorithm on heterogeneous computing systems. IEEE Access, 2020, 8, 58948- 58958.
doi: 10.1109/ACCESS.2020.2982956
|
21 |
刘志彬, 黄秋兰, 胡庆宝, 等. Kubernetes异构资源细粒度调度策略的设计与实现. 计算机工程, 2023, 49(2): 31-36, 45.
URL
|
|
LIU Z B, HUANG Q L, HU Q B, et al. Design and implementation of fine-grained scheduling strategy for Kubernetes heterogeneous resources. Computer Engineering, 2023, 49(2): 31-36, 45.
URL
|
22 |
ITURRIAGA S, NESMACHNOW S, LUNA F, et al. A parallel local search in CPU/GPU for scheduling independent tasks on large heterogeneous computing systems. The Journal of Supercomputing, 2015, 71(2): 648- 672.
doi: 10.1007/s11227-014-1315-6
|
23 |
颜雪松, 伍庆华, 胡成玉. 遗传算法及其应用. 武汉: 中国地质大学出版社, 2018.
|
|
YAN X S, WU Q H, HU C Y. Genetic algorithm and its application. Wuhan: China University of Geosciences Press, 2018.
|
24 |
汪民乐, 高晓光, 范阳涛. 先进遗传算法及其工程应用. 西安: 西北工业大学出版社, 2019.
|
|
WANG M L, GAO X G, FAN Y T. Advanced genetic algorithm and its engineering application. Xi'an: Northwestern Polytechnical University Press, 2019.
|
25 |
朱会霞. 二进制遗传算法的改进研究. 沈阳: 东北大学出版社, 2018.
|
|
ZHU H X. Research on the improvement of binary genetic algorithm. Shenyang: Northeast University Press, 2018.
|