[1] 陈翔, 赵英全, 顾庆, 等.基于文件粒度的多目标软件缺陷预测方法实证研究[J].软件学报, 2019, 30(12):3694-3713. CHEN X, ZHAO Y Q, GU Q, et al.Empirical studies on multi-objective file-level software defect prediction method[J].Journal of Software, 2019, 30(12):3694-3713.(in Chinese) [2] 于巧, 姜淑娟, 张艳梅, 等.分类不平衡对软件缺陷预测模型性能的影响研究[J].计算机学报, 2018, 41(4):809-824. YU Q, JIANG S J, ZHANG Y M, et al.The impact study of class imbalance on the performance of software defect prediction models[J].Chinese Journal of Computers, 2018, 41(4):809-824.(in Chinese) [3] 黄晓伟, 范贵生, 虞慧群, 等.基于重子节点抽象语法树的软件缺陷预测[J].计算机工程, 2021, 47(12):230-235, 248. HUANG X W, FAN G S, YU H Q, et al.Software defect prediction via heavy son node-based abstract syntax tree[J].Computer Engineering, 2021, 47(12):230-235, 248.(in Chinese) [4] 朱明辉, 张会清.基于RSSI的室内测距模型的研究[J].传感器与微系统, 2010, 29(8):19-22. ZHU M H, ZHANG H Q.Research on model of indoor distance measurement based on RSSI[J].Transducer and Microsystem Technologies, 2010, 29(8):19-22.(in Chinese) [5] XIAO Y, JIN L, YANG Z, et al.Learning from imbalanced data for predicting the number of software defects[C]//Proceedings of IEEE International Symposium on Software Reliability Engineering.Washington D.C., USA:IEEE Press, 2017:78-89. [6] HALL T, BEECHAM S, BOWES D, et al.A systematic literature review on fault prediction performance in software engineering[J].IEEE Transactions on Software Engineering, 2012, 38(6):1276-1304. [7] NAM J, PAN S J, KIM S.Transfer defect learning[C]//Proceedings of International Conference on Software Engineering.Washington D.C., USA:IEEE Press, 2013:382-391. [8] JIN C, JIN S W, YE J.Artificial neural network-based metric selection for software fault-prone prediction model[J].IET Software, 2012, 6(6):479-487. [9] 陈凯, 邵培南.基于深度学习的软件缺陷预测模型[J].计算机系统应用, 2021, 30(1):29-37. CHEN K, SHAO P N.Software defect prediction model based on deep learning[J].Computer Systems and Applications, 2021, 30(1):29-37.(in Chinese) [10] LARADJI I H, ALSHAYEB M, GHOUTI L.Software defect prediction using ensemble learning on selected features[J].Information & Software Technology, 2015, 58:388-402. [11] OKUTAN A, YILDIZ O T.Software defect prediction using Bayesian networks[J].Empirical Software Engineering, 2014, 19(1):154-181. [12] WANG T, ZHANG Z, JING X.Multiple kernel ensemble learning for software defect prediction[J].Automated Software Engineering, 2016, 23(4):569-590. [13] 杨杰, 燕雪峰, 张德平.基于Boosting的代价敏感软件缺陷预测方法[J].计算机科学, 2017, 44(8):177-180, 206. YANG J, YAN X F, ZHANG D P.Cost sensitive software defect prediction method based on Boosting[J].Computer Science, 2017, 44(8):177-180, 206.(in Chinese) [14] 李勇, 黄志球, 房丙午, 等.代价敏感分类的软件缺陷预测方法[J].计算机科学与探索, 2014, 8(12):1442-1451. LI Y, HUANG Z Q, FANG B W, et al.Using cost-sensitive classification for software defects prediction[J].Journal of Frontiers of Computer Science & Technology, 2014, 8(12):1442-1451.(in Chinese) [15] OZAKINCI R, TARHAN A.The role of process in early software defect prediction:methods, attributes and metrics[C]//Proceedings of International SPICE Conference.Berlin, Germany:Springer, 2016:287-300. [16] ALVES H, FONSECA B, ANTUNES N.Experimenting machine learning techniques to predict vulnerabilities[C]//Proceedings of 2016 Latin-American Symposium on Dependable Computing.Washington D.C., USA:IEEE Press, 2016:151-156. [17] SHARMIN S, AREFIN M R, WADUD A A, et al.SAL:an effective method for software defect prediction[C]//Proceedings of the 18th International Conference on Computer & Information Technology.Washington D.C., USA:IEEE Press, 2015:102-112. [18] 陈翔, 顾庆, 刘望舒, 等.静态软件缺陷预测方法研究[J].软件学报, 2016, 27(1):1-25. CHEN X, GU Q, LIU W S, et al.Survey of static software defect prediction[J].Journal of Software, 2016, 27(1):1-25.(in Chinese) [19] KHUAT T T, LE M H.Evaluation of sampling-based ensembles of classifiers on imbalanced data for software defect prediction problems[J].SN Computer Science, 2020, 1(2):1-16. [20] PASCARELLA L, PALOMBA F, BACCHELLI A.Fine-grained just-in-time defect prediction[J].Journal of Systems and Software, 2019, 150:22-36. [21] 胡梦园, 黄鸿云, 丁佐华.用于软件缺陷预测的集成模型[J].计算机科学, 2019, 46(11):176-180. HU M Y, HUANG H Y, DING Z H.Ensemble model for software defect prediction[J].Computer Science, 2019, 46(11):176-180.(in Chinese) [22] FIDEL G, BITTON R, SHABTAI A.When explainability meets adversarial learning:detecting adversarial examples using SHAP signatures[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2020:1-8. |