计算机工程 ›› 2010, Vol. 36 ›› Issue (4): 66-68.doi: 10.3969/j.issn.1000-3428.2010.04.023

• 软件技术与数据库 • 上一篇    下一篇

一种增量式非负矩阵分解算法

郭 立,张守志,汪 卫,施伯乐   

  1. (复旦大学计算机科学技术学院,上海 200433)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-02-20 发布日期:2010-02-20

Incremental Non-negative Matrix Factorization Algorithm

GUO Li, ZHANG Shou-zhi, WANG Wei, SHI Bai-le   

  1. (School of Computer Science and Technology, Fudan University, Shanghai 200433)
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-02-20 Published:2010-02-20

摘要: 针对现有的非负矩阵分解算法在应用于问题规模逐渐增大的情形时,运算规模随之增大、空间和时间效率不高的情况,提出一种增量式非负矩阵分解算法,使用分块矩阵的思想降低运算规模,利用上一步的分解结果参与运算从而避免重复运算。实验结果表明,该算法对节约计算资源是有效的。

关键词: 非负矩阵分解, 矩阵分解, 增量式算法

Abstract: When existing Non-negative Matrix Factorization(NMF) algorithm is applied to a problem of incremental scale, the consumption of space and time behaves inefficiency. This paper proposes an Incremental Nonnegative Matrix Factorization(INMF) algorithm, which uses partitioned matrix theory to reduce the computing scale, and uses decomposition results already derived to avoid re-calculating every time. Experimental results show that the algorithm performs efficiently for saving computing resources.

Key words: Non-negative Matrix Factorization(NMF), matrix factorization, incremental algorithm

中图分类号: