[1] ZHU X F, LI X L, ZHANG S C, et al.Robust joint graph sparse coding for unsupervised spectral feature selection[J].IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(6):1263-1275. [2] ZHANG Z, LIU L, SHEN F M, et al.Binary multi-view clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7):1774-1782. [3] ZHU X F, ZHANG S C, ZHU Y H, et al.Self-weighted multi-view fuzzy clustering[J].ACM Transactions on Knowledge Discovery from Data, 2020, 14(4):1-17. [4] HU R Y, ZHU X F, ZHU Y H, et al.Robust SVM with adaptive graph learning[J].World Wide Web, 2020, 23(3):1945-1968. [5] TSAGRIS M, PAPADOVASILAKIS Z, LAKIOTAKI K, et al.The γ-OMP algorithm for feature selection with application to gene expression data[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 99(1):1-10. [6] CISMONDI F, FIALHO A S, VIEIRA S M, et al.Missing data in medical databases:impute, delete or classify?[J].Artificial Intelligence in Medicine, 2013, 58(1):63-72. [7] GARCIA C, LEITE D, ŠKRJANC I.Incremental missing-data imputation for evolving fuzzy granular prediction[J].IEEE Transactions on Fuzzy Systems, 2020, 28(10):2348-2362. [8] SIMONE R.An accelerated EM algorithm for mixture models with uncertainty for rating data[J].Computational Statistics, 2021, 36(1):691-714. [9] ZHANG S C, LI X L, ZONG M, et al.Efficient kNN classification with different numbers of nearest neighbors[J].IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5):1774-1785. [10] PAN R L, YANG T S, CAO J H, et al.Missing data imputation by K nearest neighbours based on grey relational structure and mutual information[J].Applied Intelligence, 2015, 43(3):614-632. [11] SEFIDIAN A M, DANESHPOUR N.Missing value imputation using a novel grey based fuzzy c-means, mutual information based feature selection, and regression model[J].Expert Systems with Applications, 2019, 115:68-94. [12] HUANG C C, LEE H M.A grey-based nearest neighbor approach for missing attribute value prediction[J].Applied Intelligence, 2004, 20(3):239-252. [13] TIAN J, YU B, YU D, et al.Missing data analyses:a hybrid multiple imputation algorithm using gray system theory and entropy based on clustering[J].Applied Intelligence, 2014, 40(2):376-388. [14] LOUS, OBRADOVIC Z.Margin-based feature selection in incomplete data[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2012:125-136. [15] NIE F, HUANG H, XIAO C, et al.Efficient and robust feature selection via joint ℓ2,1-norms minimization[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.1.]:Curran Associates Inc., 2010:389-397. [16] YU H Y, GAO L R, LIAO W Z, et al.Global spatial and local spectral similarity-based manifold learning group sparse representation for hyperspectral imagery classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3043-3056. [17] ZHANG C K, WANG C.Probabilistic matrix factorization recommendation of self-attention mechanism convolutional neural networks with item auxiliary information[J].IEEE Access, 2020, 8:208311-208321. [18] MA C, LI Y X, CHI Y J.Beyond procrustes:balancing-free gradient descent for asymmetric low-rank matrix sensing[J].IEEE Transactions on Signal Processing, 2021, 69(1):867-877. [19] GILAD-BACHRACH R, NAVOT A, TISHBY N.Margin based feature selection-theory and algorithms[C]//Proceedings of the 21st International Conference on Machine Learning.New York, USA:ACM Press, 2004:452-466. [20] KIRA K, RENDELL L A.Feature selection problem:traditional methods and a new algorithm[C]//Proceedings of the 20th IEEE National Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 1992:129-134. [21] AMINI M R, USUNIER N, GOUTTE C.Uci-dataset-url[EB/OL].[2021-03-20]. https://dblp.org/rec/journals/prl/Brito. [22] LIU Y, JIANG Z S, XIANG J W.An adaptive cross-validation thresholding de-noising algorithm for fault diagnosis of rolling element bearings under variable and transients conditions[J].IEEE Access, 2020, 8:67501-67518. |