[1] YU W H, ZHANG H D, HE X N, et al.Aesthetic-based clothing recommendation[C]//Proceedings of 2018 World Wide Web Conference.New York, USA:ACM Press, 2018:649-658. [2] CHAO Y W, AHMED A, BEUTEL A, et al.Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search & Data Mining.New York, USA:ACM Press, 2017:495-503. [3] COVINGTON P, ADAMS J, SARGIN E.Deep neural networks for YouTube recommendations[C]//Proceedings of 2016 ACM Conference on Recommender Systems.New York, USA:ACM Press, 2016:191-198. [4] LI X M, XU G Q, TANG M H.Community detection for multi-layer social network based on local random walk[J].Journal of Visual Communication and Image Representation, 2018, 57:91-98. [5] ARDISSONO L, GOY A, PETRONE G, et al.INTRIGUE:personalized recommendation of tourist attractions for desktop and hand held devices[J].Applied Artificial Intelligence, 2003, 17(8/9):687-714. [6] 张玉洁, 杜雨露, 孟祥武.组推荐系统及其应用研究[J].计算机学报, 2016, 39(4):745-764. ZHANG Y J, DU Y L, MENG X W.Research on group recommendation system and its application[J].Chinese Journal of Computers, 2016, 39(4):745-764.(in Chinese) [7] SALAKHUTDINOV R.Probabilistic matrix factorization[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates, Inc., 2007:1257-1264. [8] 康雁, 李涛, 李浩, 等.融合知识图谱与协同过滤的推荐模型[J].计算机工程, 2020, 46(12):73-79, 87. KANG Y, LI T, LI H, et al.Recommendation model fusing with knowledge graph and collaborative filtering[J]. Computer Engineering, 2020, 46(12):73-79, 87.(in Chinese) [9] ROY S B, AMER-YAHIA S, LA A C, et al.Space efficiency in group recommendation[J].The VLDB Journal, 2010, 19(6):877-900. [10] WANG W, ZHANG G, LU J.Member contribution-based group recommender system[J].Decision Support Systems, 2016(87):80-93. [11] SHI J, WU B, LIN X.A latent group model for group recommendation[C]//Proceedings of 2015 IEEE International Conference on Mobile Services.Washington D.C., USA:IEEE Press, 2015:233-238. [12] LI X M, XU G Q, JIAO L T, et al.Multi-layer network community detection model based on attributes and social interaction intensity[J].Computers and Electrical Engineering, 2019, 77:300-313. [13] YANG B, LEI Y, LIU J, et al.Social collaborative filtering by trust[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(8):1633-1647. [14] SINGH M, MECHROTRA M.Impact of biclustering on the performance of biclustering based collaborative filtering[J].Expert System with Applications, 2018, 113:443-456. [15] CHEN H, YIN H, WANG W, et al.PME:projected metric embedding on heterogeneous networks for link prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference.New York, USA:ACM Press, 2018:1-5. [16] CHEN S, PENG Y.Matrix factorization for recommendation with explicit and implicit feedback[J].Knowledge-Based Systems, 2018, 158:109-117. [17] CHEN R, HUA Q Y, WANG B, et al.A novel social recommendation method fusing user's social status and homophily based on matrix factorization technique[J].IEEE Access, 2019, 7:18783-18798. [18] 王根生, 潘方正.融合多元异构信息的矩阵分解推荐算法[J].小型微型计算机系统, 2020, 41(7):1406-1412. WANG G S, PAN F Z.Matrix factorization recommendation algorithms based on multiple heterogeneous information fusion[J].Journal of Chinese Computer Systems, 2020, 41(7):1406-1412.(in Chinese) [19] LAI C H, LIU D R, LIN C S.Novel personal and group-based trust models in collaborative filtering for document recommendation[J].Information Sciences, 2013, 239(1):31-49. [20] HE X N, LIAO L Z, ZHANG H W, et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.New York, USA:ACM Press, 2017:173-182. [21] WANG H W, ZHANG F Z, WANG J L, et al.RippleNet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2018:417-426. [22] YIN H, WANG Q, ZHANG K, et al.Social influence-based group representation learning for group recommendation[C]//Proceedings of the 35th IEEE International Conference on Data Engineering.Washington D.C., USA:IEEE Press, 2019:1-5. |