[1] JAIAI A, KIM Y H, KIM Y J, et al. Robust human activity recognition from depth video using spatiotemporal multi-fused features[J]. Pattern Recognition, 2017, 61:295-308. [2] BAYAT A, POMPLUN M, TRAN D A.A study on human activity recognition using accelerometer data from smartphones[J]. Procedia Computer Science, 2014, 34:450-457. [3] JOSHI K, BHARADIA D, KOTARU M, et l.WiDeo:fine-grained device-free motion tracing using RF backscatter[C]//Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation.Berkeley, USA:[s.n.], 2015:189-204. [4] WANG Y, WU K, NI LM, et al. Wi-Fall:device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594. [5] GU Y, LIU T, LI J.Eaosense:data-driven emotion sensing via off-the-shelf Wi devices[C]//Proceedings of 2018 IEEE International Conference on Communications.Washington D.C., USA:IEEE Press, 2018:842-855. [6] DANG X C, ZHANG T, HAO Z J, et al. Wi-SD:a human motion recognition method based on CSI amplitude and phase information[C]//Proceedings of IEEE CWSN'19.Washington D.C., USA:IEEE Press, 2019:332-347. [7] ZHENG X, WANG J, SHANG G L, et al. Smokey:ubiquitous smoking detection with commercial Wi-Fi infrastructures[C]//Proceedings of IEEE International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2016:752-769. [8] WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of Wi-Fi signal based human activity recognition[C]//Proceedings of IEEE International Conference on Mobile Computing and Networking.Washington D.C., USA:IEEE Press, 2015:65-76. [9] WANG W, LIU A X, SHAHZAD M.Gait recognition using Wi-Fi signals[C]//Proceedings of ACM International Joint Conference on Pervasive Ubiquitous Computer.New York, USA:ACM Press, 2016:363-373. [10] LIU M, ZHANG L, YANG P, et al. Wi-Run:device-free step estimation system with commodity Wi-Fi[J]. Journal of Network and Computer Applications, 2019, 143(19): 77-88. [11] CHOWDHURY T Z, LEUNG C, MIAO C, et al. Wi-HACS:leveraging Wi-Fi for human activity classification using OFDM subcarriers' correlation[C]//Proceedings of IEEE Global Conference on Signal and Information Processing.Washington D.C., USA:IEEE Press, 2017:338-342. [12] YAN H, ZHANG Y, WANG Y, et al. Wi-Act:a passive WiFi-based human activity recognition system[J]. IEEE Sensors Journal, 2020, 20(1): 296-305. [13] GAO Q, WANG J, MA X, et al. CSI-based device-free wireless localization and activity recognition using radio image features[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10346-10356. [14] ZAIN U l, ABIDEN A, WANG H Y.Wi-based driver's activity monitoring with efficient computation of radio-image features[J]. Sensors, 2020, 20(5): 77-86. [15] WANG Z, JIANG K, HOU Y, et al. A survey on CSI-based human behavior recognition in through-the-wall scenario[J]. IEEE Access, 2019, 7:772-793. [16] 鲁翔.基于Wi-Fi信道状态信息的室内人员感知研究与实现[D]. 成都:电子科技大学, 2019. LU X.Research and implementation of indoor personnel perception based on Wi-Fi channel state information[D]. Chengdu:University of Electronic Science and Technology of China, 2019.(in Chinese) [17] 张明军.空间复用MIMO系统的信号检测方法比较[J]. 长春师范大学学报(自然科学版), 2019, 38(3): 35-41. ZHANG M J.Comparison of signal detection methods for spatial multiplexing MIMO systems[J]. Journal of Changchun Normal University (Natural Science), 2019(6): 35-41.(in Chinese) [18] 李晓薇, 余江, 常俊, 等. 一种基于CSI的非合作式人体行为识别方法[J]. 计算机科学, 2019, 46(12): 266-271. LI X W, YU J, CHANG J, et al. A non-cooperative human behavior recognition method based on CSI[J]. Computer Science, 2019, 46(12): 266-271.(in Chinese) [19] WU X, CHU Z, YANG P.TW-See:human activity recognition through the wall with commodity Wi-Fi devices[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 306-319. [20] CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2011, 58(3): 1-37. [21] ZHU D, PANG N, LI G, et al. NotiFi:a ubiquitous Wi-Fi-based abnormal activity detection system[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2017:1766-1773. |