1 |
朱菊香, 任明煜, 谷卫, 等. 基于CEEMDAN-IGWO-CNN-LSTM空气质量预测建模. 计算机仿真, 2025, 42 (1): 529- 537.
doi: 10.3969/j.issn.1006-9348.2025.01.097
|
|
ZHU J X , REN M X , GU W , et al. CEEMDAN-IGWO-CNN-LSTM based air quality prediction modeling. Computer Simulation, 2025, 42 (1): 529- 537.
doi: 10.3969/j.issn.1006-9348.2025.01.097
|
2 |
WANG T Z, XU J H, CHEN J H. A short term passenger flow prediction method for urban rail transit considering station classification[C]//Proceedings of the International Conference on Smart Transportation and City Engineering (STCE). Chongqing, China: SPIE, 2024: 1-12.
|
3 |
ZHANG P J , REN P , LIU Y , et al. Autoregressive matrix factorization for imputation and forecasting of spatiotemporal structural monitoring time series. Mechanical Systems and Signal Processing, 2022, 169, 108718.
doi: 10.1016/j.ymssp.2021.108718
|
4 |
张叶娥. 基于带状无线传感器网络的实时智能数据收集算法. 吉林大学学报(理学版), 2023, 61 (2): 393- 399.
|
|
ZHANG Y E . Real-time intelligent data collection algorithm based on banded wireless sensor networks. Journal of Jilin University (Science Edition), 2023, 61 (2): 393- 399.
|
5 |
FERNANDES S , ANTUNES M , GOMES D , et al. Misalignment problem in matrix decomposition with missing values. Machine Learning, 2021, 110 (11): 3157- 3175.
|
6 |
CHEN X , SUN L . Bayesian temporal factorization for multidimensional time series prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (9): 4659- 4673.
|
7 |
MIAO C , YUAN D , WANG D Y , et al. GPR high-frequency clutter suppression based on nonnegative matrix factorization. Computer Engineering and Applications, 2022, 58 (1): 241- 247.
|
8 |
HE W , ZHANG H Y , ZHANG L P . Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (7): 3909- 3921.
doi: 10.1109/TGRS.2017.2683719
|
9 |
郑裕龙, 陈启买, 贺超波, 等. 图卷积网络增强的非负矩阵分解社区发现方法. 计算机工程与应用, 2022, 58 (11): 73- 83.
doi: 10.3778/j.issn.1002-8331.2110-0487
|
|
ZHENG Y L , CHEN Q M , HE C B , et al. Nonnegative matrix factorization community detection method enhanced by graph convolutional network. Computer Engineering and Applications, 2022, 58 (11): 73- 83.
doi: 10.3778/j.issn.1002-8331.2110-0487
|
10 |
YU H F, RAO N, DHILLON I S, et al. Temporal regularized matrix factorization for high-dimensional time series prediction[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 847-855.
|
11 |
SEN R, YU H F, DHILLON I. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting[EB/OL]. [2023-10-25]. https://arxiv.org/abs/1905.03806.
|
12 |
YANG J M , PENG Z R , LIN L . Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and graph Laplacian regularized matrix factorization. Transportation Research Part C: Emerging Technologies, 2021, 129, 103228.
doi: 10.1016/j.trc.2021.103228
|
13 |
刘杭, 殷歆, 陈杰, 等. 基于混合网络模型的多维时间序列预测. 计算机工程, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
|
LIU H , YIN X , CHEN J , et al. Multi-dimensional time-series prediction based on hybrid network models. Computer Engineering, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
14 |
CHEN B , FANG M , LI X . Denoising matrix factorization for high-dimensional time series forecasting. Neural Computing and Applications, 2024, 36 (2): 993- 1005.
doi: 10.1007/s00521-023-09072-0
|
15 |
YANG X H , CHE H J , LEUNG M F , et al. Adaptive graph nonnegative matrix factorization with the self-paced regularization. Applied Intelligence, 2023, 53 (12): 15818- 15835.
doi: 10.1007/s10489-022-04339-w
|
16 |
CHEN L , YANG Y , WANG W . Temporal autoregressive matrix factorization for high-dimensional time series prediction of loss. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (10): 13741- 1375.
doi: 10.1109/TNNLS.2023.3271327
|
17 |
LIANG W , CAO J , CHEN L , et al. Crime prediction with missing data via spatiotemporal regularized tensor decomposition. IEEE Transactions on Big Data, 2023, 9 (5): 1392- 1407.
doi: 10.1109/TBDATA.2023.3283098
|
18 |
MIROWSKI P, LECUN Y. Dynamic factor graphs for time series modeling[M]//BUNTINE W, GROBELNIK M, MLADENI AC'G D. Machine learning and knowledge discovery in databases. Berlin, Germany: Springer, 2009: 128-143.
|
19 |
PENG C , ZHANG Y Q , CHEN Y Y , et al. Log-based sparse nonnegative matrix factorization for data representation. Knowledge-Based Systems, 2022, 251, 109127.
doi: 10.1016/j.knosys.2022.109127
|
20 |
ATIF S M , GILLIS N , QAZI S , et al. Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks. Computer Networks, 2021, 201, 108564.
doi: 10.1016/j.comnet.2021.108564
|
21 |
张舒宇, 吴刘仓, 詹金龙. 基于Laplace分布下混合联合位置与尺度模型的参数估计. 应用概率统计, 2017, 33 (5): 487- 496.
doi: 10.3969/j.issn.1001-4268.2017.05.005
|
|
ZHANG S Y , WU L C , ZHAN J L . Parameters estimation for mixture of joint location and scale models based on the Laplace distribution. Chinese Journal of Applied Probability and Statistics, 2017, 33 (5): 487- 496.
doi: 10.3969/j.issn.1001-4268.2017.05.005
|
22 |
KONG D G, DING C, HUANG H, et al. Robust nonnegative matrix factorization using L21-norm[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2011: 673-682.
|
23 |
SHEN X Y , ZHANG X , LAN L , et al. Another robust NMF: rethinking the hyperbolic tangent function and locality constraint. IEEE Access, 2019, 7, 31089- 31102.
doi: 10.1109/ACCESS.2019.2903309
|
24 |
LIN C J . Projected gradient methods for nonnegative matrix factorization. Neural Computation, 2007, 19 (10): 2756- 2779.
doi: 10.1162/neco.2007.19.10.2756
|
25 |
|
26 |
JIN X B , MIAO J Y , WANG Q F , et al. Sparse matrix factorization with L2, 1 norm for matrix completion. Pattern Recognition, 2022, 127, 108655.
doi: 10.1016/j.patcog.2022.108655
|
27 |
SHEN B, LIU B D, WANG Q F, et al. Robust nonnegative matrix factorization via L1 norm regularization by multiplicative updating rules[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D. C., USA: IEEE Press, 2014: 5282-5286.
|
28 |
NICHOLSON W B , MATTESON D S , BIEN J . VARX-L: structured regularization for large vector autoregressions with exogenous variables. International Journal of Forecasting, 2017, 33 (3): 627- 651.
doi: 10.1016/j.ijforecast.2017.01.003
|