计算机工程 ›› 2011, Vol. 37 ›› Issue (4): 168-169.doi: 10.3969/j.issn.1000-3428.2011.04.060

• 安全技术 • 上一篇    下一篇

基于椭圆曲线的数字签名和加密算法

许德武,陈 伟   

  1. (浙江师范大学数理与信息工程学院,浙江 金华 321004)
  • 出版日期:2011-02-20 发布日期:2011-02-17
  • 作者简介:许德武(1978-),男,讲师、硕士,主研方向:信息安全;陈 伟,副教授、博士
  • 基金项目:

    国家自然科学基金资助项目(60873234)

Digital Signature and Encrypt Algorithm Based on Elliptic Curve

XU De-wu, CHEN Wei   

  1. (College of Mathematics Physics & Information Engineering, Zhejiang Normal University, Jinhua 321004, China)
  • Online:2011-02-20 Published:2011-02-17

摘要:

直接将ElGamal签名方案移植到椭圆曲线密码系统上会出现未定义的两点相乘运算。为解决上述问题,改进签名生成及验证过程,使用代数运算代替椭圆曲线上的数乘运算,给出改进算法的可行性证明及安全性分析。对MV加密算法进行改进,降低其膨胀率,通过实验证明其执行速度快于RSA和ECC-E算法。执行效率及密钥长度方面的优势使2种改进算法能更有效地应用于智能卡计算中。

关键词: 椭圆曲线, 数字签名, 加密, ElGamal算法, MV算法

Abstract:

Applying ElGamal signature scheme to the elliptic curve cryptosystem may introduce an undefined operation of point multiplex in elliptic curve. In order to solve the problem, this paper improves processes of signature generation and validation, using a simple algebra operation instead of multiplication operation, and presents feasibility and security analysis. Menezes Vanstone(MV) algorithm is improved to reduce its data expand rate. Experimental results show that its operation speed is faster than RSA or ECC-E. Execution efficiency and key length of the improved algorithms make them more efficient in the application of smart card computation.

Key words: elliptic curve, digital signature, encrypt, ElGamal algorithm, Menezes Vanstone(MV) algorithm

中图分类号: