作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (9): 158-171. doi: 10.19678/j.issn.1000-3428.0066861

• 网络空间安全 • 上一篇    下一篇

图数据精确最短距离的隐私保护外包计算方案

于莹莹1, 丁红发1,2,*, 蒋合领1,3   

  1. 1. 贵州财经大学 信息学院, 贵阳 550025
    2. 贵州省大数据统计分析重点实验室, 贵阳 550025
    3. 贵安新区科创产业发展有限公司, 贵阳 550025
  • 收稿日期:2023-02-06 出版日期:2023-09-15 发布日期:2023-09-14
  • 通讯作者: 丁红发
  • 作者简介:

    于莹莹(1998-), 女, 硕士研究生, 主研方向为隐私保护、可验证外包计算

    蒋合领, 讲师、博士研究生

  • 基金资助:
    国家自然科学基金(62002080); 中国博士后基金(2020M673584XB); 贵州省教育厅青年科技人才成长项目(黔教合KY字[2021]140)

Privacy-Preserving Outsourced Computation Scheme for Accurate Shortest Distance of Graph Data

Yingying YU1, Hongfa DING1,2,*, Heling JIANG1,3   

  1. 1. School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
    2. Guizhou Key Laboratory of Big Data Statistical Analysis, Guiyang 550025, China
    3. Gui'an New Area Science and Innovation Industry Development Co., Ltd., Guiyang 550025, China
  • Received:2023-02-06 Online:2023-09-15 Published:2023-09-14
  • Contact: Hongfa DING

摘要:

社交网络、通信网络、生物蛋白等海量图数据应用广泛且包含大量个人隐私和商业敏感信息,通常需要对图数据加密并通过云计算提供安全高效的外包查询服务。然而,设计加密图数据上的高效精确最短距离外包计算方案既要保证隐私数据的高安全性,又要提高加密查询等计算的效率,具有一定挑战性。提出一种基于二跳覆盖标记和加法同态的图数据精确最短距离查询外包计算方案。使用广度优先搜索修剪策略对二跳覆盖标记生成的原始标记集合进行预处理,减少预处理的标记数量并提高查询效率。基于加法同态加密和伪随机函数对标记集合进行加密处理并构造安全索引结构,保护图数据的节点和距离信息,实现加密图数据的精确最短距离查询。实验结果表明,该方案能正确进行加密图数据上精确最短距离的外包计算,在半诚实假设下满足随机预言模型下的IND-CPA安全和(L1, L2)安全,能有效保护图结构数据在外包计算中的隐私信息,在图数据加密和最短距离查询阶段相较现有同类方案分别降低了13.04%~24.24%和36.44%~46.13%的时间开销。

关键词: 图数据外包计算, 最短距离查询, 二跳覆盖标记, 加法同态加密, 隐私保护

Abstract:

The widely used massive graph data, such as the ones used for social networks, communication networks, and bioproteins, contain large amount of private and sensitive personal and commercial information; therefore, it is essential to encrypt such graph data and outsource query services in cloud computing. However, it is challenging to design efficient outsourcing schemes for computation that can accurately determine the shortest-distance queries on encrypted graph data to ensure high security of private information and to improve the efficiency of computations such as encrypted queries.In this study, an outsourcing computing scheme for exact shortest-distance queries is proposed for graph data based on the 2-hop cover labeling and additive homomorphic encryption.First, a breadth-first search pruning strategy is proposed for preprocessing the original set of labels generated by the 2-hop cover labeling, wherein the number of labels is reduced, and the query efficiency is improved. Subsequently, the set of labels is encrypted, and a secure index structure is constructed based on the additive homomorphic encryption and pseudo-random function.Thus, the information related to the nodes and distances of the graph data is protected while computing the accurate shortest distance query on the encrypted graph data. Analysis and experiments show that the proposed scheme can accurately compute the outsourcing shortest distance of the encrypted graph data with a semi-honest assumption that satisfies INDCPA under the random oracle model and(L1, L2)security. The proposed scheme can protect the private information retrieved during outsourcing computation on graph data, thereby reducing the overhead by approximately 13.04%-24.24% and 36.44%-46.13% in the graph data encryption and shortest distance querying phases, respectively, when comparing with the existing similar schemes.

Key words: outsourced computation of graph data, shortest distance querying, 2-hop cover labeling, additive homomorphic encryption, privacy preserving