1 |
QIAN J W , LI X Y , ZHANG C H , et al. Social network de-anonymization and privacy inference with knowledge graph model. IEEE Transactions on Dependable and Secure Computing, 2019, 16 (4): 679- 692.
doi: 10.1109/TDSC.2017.2697854
|
2 |
JI S L , MITTAL P , BEYAH R . Graph data anonymization, de-anonymization attacks, and de-anonymizability quantification: a survey. IEEE Communications Surveys & Tutorials, 2017, 19 (2): 1305- 1326.
|
3 |
ZHANG L , XIONG H , HUANG Q , et al. Cryptographic solutions for cloud storage: challenges and research opportunities. IEEE Transactions on Services Computing, 2022, 15 (1): 567- 587.
doi: 10.1109/TSC.2019.2937764
|
4 |
刘向宇, 李佳佳, 安云哲, 等. 一种保持结点可达性的高效社会网络图匿名算法. 软件学报, 2016, 27 (8): 1904- 1921.
URL
|
|
LIU X Y , LI J J , AN Y Z , et al. Efficient algorithm on anonymizing social networks with reachability preservation. Journal of Software, 2016, 27 (8): 1904- 1921.
URL
|
5 |
WEI C K , JI S L , LIU C C , et al. AsgLDP: collecting and generating decentralized attributed graphs with local differential privacy. IEEE Transactions on Information Forensics and Security, 2020, 15, 3239- 3254.
doi: 10.1109/TIFS.2020.2985524
|
6 |
WANG S L , ZHENG Y F , JIA X H , et al. PeGraph: a system for privacy-preserving and efficient search over encrypted social graphs. IEEE Transactions on Information Forensics and Security, 2022, 17, 3179- 3194.
doi: 10.1109/TIFS.2022.3201392
|
7 |
SUNTAXI G , GHAZI A A , BÖHM K . Secrecy and performance models for query processing on outsourced graph data. Distributed and Parallel Databases, 2021, 39 (1): 35- 77.
doi: 10.1007/s10619-020-07284-0
|
8 |
BLANTON M, STEELE A, ALISAGARI M. Data-oblivious graph algorithms for secure computation and outsourcing[C]//Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security. New York, USA: ACM Press, 2013: 207-218.
|
9 |
KELLER M, SCHOLL P. Efficient, oblivious data structures for MPC[C]//Proceedings of the 20th International Conference on the Theory and Application of Cryptology and Information Security. Berlin, Germany: Springer, 2014: 506-525.
|
10 |
LI J W , LIN D , SQUICCIARINI A C , et al. Towards privacy-preserving storage and retrieval in multiple clouds. IEEE Transactions on Cloud Computing, 2017, 5 (3): 499- 509.
doi: 10.1109/TCC.2015.2485214
|
11 |
GUPTA M K , CHANDRA P . Effects of similarity/distance metrics on k-means algorithm with respect to its applications in IoT and multimedia: a review. Multimedia Tools and Applications, 2022, 81 (26): 37007- 37032.
doi: 10.1007/s11042-021-11255-7
|
12 |
ZHU A D, MA H, XIAO X K, et al. Shortest path and distance queries on road networks: towards bridging theory and practice[C]//Proceedings of 2013 International Conference on Management of Data. New York, USA: ACM Press, 2013: 857-868.
|
13 |
OUYANG D, QIN L, CHANG L J, et al. When hierarchy meets 2-hop-labeling: efficient shortest distance queries on road networks[C]//Proceedings of 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 709-724.
|
14 |
CHASE M, KAMARA S. Structured encryption and controlled disclosure[M]//ABE M. Advances in cryptology-ASIACRYPT. Berlin, Germany: Springer, 2010: 577-594.
|
15 |
CAO N, YANG Z Y, WANG C, et al. Privacy-preserving query over encrypted graph-structured data in cloud computing[C]//Proceedings of the 31st International Conference on Distributed Computing Systems. Washington D.C., USA: IEEE Press, 2011: 393-402.
|
16 |
YIN P P, FAN Z, YIN S X. Privacy-preserving reachability query services for sparse graphs[C]//Proceedings of the 30th International Conference on Data Engineering Workshops. Washington D.C., USA: IEEE Press, 2014: 32-35.
|
17 |
MENG X R, KAMARA S, NISSIM K, et al. GRECS: graph encryption for approximate shortest distance queries[C]//Proceedings of the 22nd SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2015: 504-517.
|
18 |
|
19 |
沈蒙, 赵梦蕉, 祝烈煌, 等. 支持近似最短距离查询的高效图加密机制. 南京信息工程大学学报, 2017, 9 (5): 527- 532.
URL
|
|
SHEN M , ZHAO M J , ZHU L H , et al. Efficient graph encryption mechanism for approximate shortest distance search based on cloud. Journal of Nanjing University of Information Science & Technology, 2017, 9 (5): 527- 532.
URL
|
20 |
LIU C , ZHU L H , HE X J , et al. Enabling privacy-preserving shortest distance queries on encrypted graph data. IEEE Transactions on Dependable and Secure Computing, 2021, 18 (1): 192- 204.
doi: 10.1109/TDSC.2018.2880981
|
21 |
SHEN M , MA B L , ZHU L H , et al. Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection. IEEE Transactions on Information Forensics and Security, 2018, 13 (4): 940- 953.
doi: 10.1109/TIFS.2017.2774451
|
22 |
WANG Q, REN K, DU M X, et al. SecGDB: graph encryption for exact shortest distance queries with efficient updates[M]//KIAYIAS A. Financial cryptography and data security. Berlin, Germany: Springer, 2017: 79-97.
|
23 |
GHOSH E, KAMARA S, TAMASSIA R. Efficient graph encryption scheme for shortest path queries[C]//Proceedings of 2021 ACM Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2021: 516-525.
|
24 |
DU M X , WU S K , WANG Q , et al. GraphShield: dynamic large graphs for secure queries with forward privacy. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (7): 3295- 3308.
|
25 |
ZHANG C , ZHU L H , XU C , et al. PGAS: privacy-preserving graph encryption for accurate constrained shortest distance queries. Information Sciences, 2020, 506, 325- 345.
doi: 10.1016/j.ins.2019.07.082
|
26 |
|
27 |
WANG S B , XIAO X K , YANG Y , et al. Effective indexing for approximate constrained shortest path queries on large road networks. Proceedings of the VLDB Endowment, 2016, 10 (2): 61- 72.
doi: 10.14778/3015274.3015277
|
28 |
XU Z F , ZHOU F C , LI J , et al. Graph encryption for all-path queries. Concurrency and Computation: Practice and Experience, 2020, 32 (16): 23- 34.
|
29 |
WANG Y, WANG Q, KOEHLER H, et al. Query-by-sketch: scaling shortest path graph queries on very large networks[C]//Proceedings of 2021 International Conference on Management of Data Virtual Event. New York, USA: ACM Press, 2021: 1946-1958.
|
30 |
AKIBA T, IWATA Y, YOSHIDA Y. Fast exact shortest-path distance queries on large networks by pruned landmark labeling[C]//Proceedings of 2013 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2013: 349-360.
|
31 |
VLADIMIR K, THOMAS S. Improved garbled circuit: free XOR gates and applications[C]//Proceedings of the 35th International Colloquium, Automata, Languages and Programming. Berlin, Germany: Springer, 2018: 486-498.
|