1 |
陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类与识别研究综述. 计算机学报, 2023, 46 (5): 1060- 1085.
doi: 10.11897/SP.J.1016.2023.01060
|
|
CHEN Z H , CHENG G , XU Z H , et al. A survey on internet encrypted traffic detection, classification and identification. Chinese Journal of Computers, 2023, 46 (5): 1060- 1085.
doi: 10.11897/SP.J.1016.2023.01060
|
2 |
侯剑, 鲁辉, 刘方爱, 等. 加密恶意流量检测及对抗综述. 软件学报, 2024, 35 (1): 333- 355.
doi: 10.13328/j.cnki.jos.006891
|
|
HOU J , LU H , LIU F A , et al. Detection and countermeasure of encrypted malicious traffic: a survey. Journal of Software, 2024, 35 (1): 333- 355.
doi: 10.13328/j.cnki.jos.006891
|
3 |
陈良臣, 高曙, 刘宝旭, 等. 网络加密流量识别研究进展及发展趋势. 信息网络安全, 2019, 19 (3): 19- 25.
doi: 10.3969/j.issn.1671-1122.2019.03.003
|
|
CHEN L C , GAO S , LIU B X , et al. Research status and development trends on network encrypted traffic identification. Netinfo Security, 2019, 19 (3): 19- 25.
doi: 10.3969/j.issn.1671-1122.2019.03.003
|
4 |
邓昕, 刘朝晖, 欧阳燕, 等. 基于CNN CBAM-BiGRU Attention的加密恶意流量识别. 计算机工程, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
|
DENG X , LIU Z H , OUYANG Y , et al. Encrypted malicious traffic identification based on CNN CBAM-BiGRU Attention. Computer Engineering, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
5 |
|
6 |
HE H Y, YANG Z G, CHEN X N. PERT: payload encoding representation from Transformer for encrypted traffic classification[C]//Proceedings of 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation. Washington D. C., USA: IEEE Press, 2020: 1-8. 10.23919/ITUK50268.2020.9303204
|
7 |
|
8 |
VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: semi-supervised mobile-app fingerprinting on encrypted network traffic[C]//Proceedings of 2020 Network and Distributed System Security Symposium. New York, USA: ACM Press, 2020: 23-29. 10.14722/ndss.2020.24412
|
9 |
TAYLOR V F , SPOLAOR R , CONTI M , et al. Robust smartphone app identification via encrypted network traffic analysis. IEEE Transactions on Information Forensics and Security, 2018, 13 (1): 63- 78.
doi: 10.1109/TIFS.2017.2737970
|
10 |
Al-NAAMI K, CHANDRA S, MUSTAFA A, et al. Adaptive encrypted traffic fingerprinting with bi-directional dependence[C]//Proceedings of the 32nd Annual Conference on Computer Security Applications. New York, USA: ACM Press, 2016: 177-188. 10.1145/2991079.2991123
|
11 |
|
12 |
LOTFOLLAHI M , SIAVOSHANI M J , ZADE R S H , et al. Deep Packet: a novel approach for encrypted traffic classification using deep learning. Soft Computing, 2020, 24 (3): 1999- 2012.
doi: 10.1007/s00500-019-04030-2
|
13 |
LIN K , XU X L , GAO H H . TSCRNN: a novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT. Computer Networks, 2021, 190, 107974.
doi: 10.1016/j.comnet.2021.107974
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
SENGUPTA S, GANGULY N, DE P, et al. Exploiting diversity in Android TLS implementations for mobile app traffic classification[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 1657-1668. 10.1145/3308558.3313738
|
20 |
DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy. New York, USA: ACM Press, 2016: 407-414. 10.5220/0005740704070414
|
21 |
PANCHENKO A, NIESSEN L, ZINNEN A, et al. Website fingerprinting in onion routing based anonymization networks[C]//Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society. New York, USA: ACM Press, 2011: 103-114.
|
22 |
SHEN M , ZHANG J , ZHU L , et al. Accurate decentralized application identification via encrypted traffic analysis using graph neural networks. IEEE Transactions on Information Forensics and Security, 2021, 16, 2367- 2380.
doi: 10.1109/TIFS.2021.3050608
|
23 |
WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of International Conference on Information Networking. Washington D. C., USA: IEEE Press, 2017: 712-717. 10.1109/ICOIN.2017.7899588
|
24 |
LASHKARI A H, GIL G D, MAMUN M S I, et al. Characterization of Tor traffic using time based features[C]//Proceedings of the 3rd International Conference on Information Systems Security and Privacy. [S. l. ]: SciTe Press, 2017: 253-262. 10.5220/0006105602530262
|
25 |
LI R, XIAO X, NI S G, et al. Byte segment neural network for network traffic classification[C]//Proceedings of IEEE/ACM 26th International Symposium on Quality of Service. New York, USA: ACM Press, 2018: 1-10. 10.1109/IWQoS.2018.8624128
|
26 |
WANG P, LI S, YE F, et al. PacketCGAN: exploratory study of class imbalance for encrypted traffic classification using CGAN[C]//Proceedings of IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2020: 1-7. 10.1109/ICC40277.2020.9148946
|
27 |
ZHENG W B, GOU C, YAN L, et al. Learning to classify: a flow-based relation network for encrypted traffic classification[C]//Proceedings of The Web Conference 2020. New York, USA: ACM Press, 2020: 13-22. 10.1145/3366423.3380090
|
28 |
|
29 |
PANCHENKO A, LANZE F, ZINNEN A, et al. Website fingerprinting at Internet scale[C]//Proceedings of 2016 Network and Distributed System Security Symposium. New York, USA: ACM Press, 2016: 97-103. 10.14722/NDSS.2016.23477
|
30 |
LIU C, HE L, XIONG G, et al. FS-Net: a flow sequence network for encrypted traffic classification[C]//Proceedings of Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2019: 1171-1179. 10.1109/INFOCOM.2019.8737507
|