[1]张若京.张量分析简明教程[M].上海:同济大学出版社,2010.
[2]王明月.基于张量分解的统计模型及其应用[D].苏州:苏州科技大学,2016.
[3]徐联微,杨晓梅.基于迭代张量高阶奇异值分解的运动目标提取[J].计算机应用研究,2016,33(9):2856-2861.
[4]KOLDA T G,BADER B W.Tensor decomposition and applications[J].Slam,2009,51(3):455-500.
[5]张梦元.基于CUDA的矩阵乘法的并行实现[J].信息通信,2012,2(2):20-21.
[6]张雄军.图像恢复和低秩张量逼近的模型及算法研究[D].长沙:湖南大学,2017.
[7]杨洪礼.非负矩阵与张量分解及其应用[D].青岛:山东科技大学,2011.
[8]张雄军.图像恢复和低秩张量逼近的模型及算法研究[D].长沙:湖南大学,2017.
[9]王丽琪.张量的低秩逼近与梯度流方法[D].大连:大连理工大学,2015.
[10]王磊,王斌,张立明.基于张量分析和小波包变换的高光谱图像压缩[J].复旦学报(自然科学版),2013,52(3):371-379.
[11]TUCKER L R.Some mathematical notes on three-mode factor analysis[J].Psychometrika,1966,31(3):279-311.
[12]LATHAUWER L D,MOOR B D,VANDWEALLE J.A multilinear singular value decomposition[J].SIAM Journal on Matrix Analysis and Applications,2000,21(4):1253-1278.
[13]LATHAUWER L D,MOOR B D,VANDWEALLE J.On the best rank-1 and rank-(R1,R2,…,RN) approximation of higherorder tensors[J].SIAM Journal on Matrix Analysis and Applications,2000,21(4):123-149.
[14]ANDERSSON C A,BRO R.Improving the speed of multiway algorithms:Part II:compression[J].Chemometrics and Intelligent Laboratory Systems,1998,42(1/2):105-113.
[15]BARRACHINA S,CASTILLO M,IGUAL F D,et al.Evaluation and tuning of the Level 3 CUBLAS for graphics processors[C]//Proceedings of IEEE International Symposium on Parallel and Distributed Processing.Washington D.C.,USA:IEEE Press,2008:1-8.
[16]周海芳,高畅,方民权.基于CUBLAS和CUDA 的MNF并行算法设计与优化[J].湖南大学学报(自然科学版),2017,44(4):147-156.
[17]张韵华.数值计算方法和算法[M].北京:科学出版社,2000.
[18]CHAKARAVARTHY V T,CHOI J W,JOSEPH D J,et al.On optimizing distributed tucker decomposition for dense tensors[C]//Proceedings of IEEE Parallel and Distributed Processing Symposium.Washington D.C.,USA:IEEE Press,2017:1038-1047.
[19]KROOONENBERG P M,LEEUW J D,CASTILLO M.Principal component analysis of three-mode data by means of alternating least squares algorithms[J].Psychometrika,1980,45(1):69-97. |