[1] VASWANI N, BOUWMANS T, JAVED S, et al.Robust subspace learning:robust PCA, robust subspace tracking, and robust subspace recovery[EB/OL].[2020-12-10].https://arxiv.org/pdf/1711.09492.pdf. [2] LIU J, OSHER S.Block matching local SVD operator based sparsity and TV regularization for image denoising[J].Journal of Scientific Computing, 2019, 78(1):607-624. [3] SAFONT G, SALAZAR A, VERGARA L, et al.Probabilistic distance for mixtures of independent component analyzers[J].IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1161-1173. [4] FU X, HUANG K, SIDIROPOULOS N D, et al.Nonnegative matrix factorization for signal and data analytics:identifiability, algorithms, and applications[EB/OL].[2020-12-10].https://arxiv.org/pdf/1803.01257.pdf. [5] LEE D D, SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature, 1999, 401(6755):788-791. [6] YAN S, XU D, YANG Q, et al.Multilinear discriminant analysis for face recognition[J].IEEE Transactions on Image Processing, 2007, 16(1):212-220. [7] CICHOCKI A, MANDIC D, DE LATHAUWER L, et al.Tensor decompositions for signal processing applications from two-way to multiway component analysis[J].IEEE Signal Processing Magazine, 2015, 32(2):145-163. [8] HARSHMAN R A.Foundations of the parafac procedure:models and conditions for an "explanatory" multimodal factor analysis[EB/OL].[2020-12-10].https://psychology.uwo.ca/faculty/harshman/wpppfac0.pdf. [9] TUCKER L R.Some mathematical notes on three-mode factor analysis[J].Psychometrika, 1966, 31(3):279-311. [10] KOLDA T G, TAMARA G, BADER, et al.Tensor decompositions and applications[J].SIAM Review, 2009, 51(3):455-500. [11] ZHOU G, CICHOCKI A, ZHAO Q, et al.Efficient nonnegative tucker decompositions:algorithms and uniqueness[J].IEEE Transactions on Image Processing, 2015, 24(12):4990-5003. [12] LI S Z, HOU X W, ZHANG H J, et al.Learning spatially localized, parts-based representation[C]//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision & Pattern Recognition.Kauai, USA:IEEE Press, 2001:1582-1598. [13] CAI D, HE X, WU X, et al.Non-negative matrix factorization on manifold[C]//Proceedings of the 8th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2008:63-72. [14] CAI D, HE X, HAN J, et al.Graph regularized nonnegative matrix factorization for data representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. [15] LENG C, ZHANG H, CAI G, et al.Graph regularized LP smooth non-negative matrix factorization for data representation[J].IEEE/CAA Journal of Automatica Sinica, 2019, 6(2):584-595. [16] WANG Y, GUI L, ZHANG Y.Neighborhood preserving non-negative tensor factorization for image representation[C]//Proceedings of IEEE International Conference on Acoustics.Washington D.C., USA:IEEE Press, 2012:3889-3392. [17] WANG C, HE X, BU J, et al.Image representation using Laplacian regularized nonnegative tensor factorization[J].Pattern Recognition, 2011, 44(10/11):2516-2526. [18] KIM Y D, CHOI S.Nonnegative tucker decomposition[C]//Proceedings of IEEE Conference on Computer Vision & Pattern Recognition.Washington D.C., USA:IEEE Press, 2008:1-8. [19] JIANG B, DING C, TANG J, et al.Image representation and learning with graph-Laplacian tucker tensor decomposition[J].IEEE Transactions on Cybernetics, 2019, 49(4):1417-1426. [20] LI X, NG M K, CONG G, et al.MR-NTD:manifold regularization nonnegative tucker decomposition for tensor data dimension reduction and representation[J].IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8):1787-1800. [21] QIU Y, ZHOU G, ZHANG Y, et al.Graph regularized nonnegative tucker decomposition for tensor data representation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2019:8613-8617. [22] ZHOU D, HUANG J, SCHLKOPF B.Learning with hypergraphs:clustering, classification, and embedding[C]//Proceedings of the 20th Annual Conference on Neural Information Processing Systems.Vancouver, Canada:MIT Press, 2006:134-146. [23] AGARWAL S, BRANSON K, BELONGIE S.Higher order learning with graphs[C]//Proceedings of the 23rd International Conference on Machine Learning.Pittsburgh, USA:[s.n.], 2006:121-128. [24] LIU M, ZHANG J, GUO X, et al.Hypergraph regularized sparse feature learning[J].Neurocomputing, 2017, 237(10):185-192. [25] ZENG K, YU J, LI C, et al.Image clustering by hyper-graph regularized non-negative matrix factorization[J].Neurocomputing, 2014, 138(22):209-217. [26] WANG W, QIAN Y, TANG Y Y.Hypergraph-regularized sparse NMF for hyperspectral unmixing[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2):681-694. [27] 罗永恩, 胡继承, 徐茜.基于超图的多模态关联特征处理方法[J].计算机工程, 2017, 43(1):226-230. LUO Y E, HU J C, XU Q.Multimodal correlation feature processing method based on hypergraph[J].Computer Engineering, 2017, 43(1):226-230.(in Chinese) [28] BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[J].Advances in Neural Information Processing Systems, 2001, 14(6):585-591. [29] LEE D D, SEUNG H S.Algorithms for non-negative matrix factorization[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.1.]:MIT Press, 2000:135-153. [30] MACQUEEN J B.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Los Angeles, USA:University of California Press, 1967:238-247. [31] XU W, LIU X, GONG Y.Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2003:267-273. |