作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (2): 233-238,245. doi: 10.19678/j.issn.1000-3428.0056183

• 体系结构与软件技术 • 上一篇    下一篇

边缘计算设备的性能功耗测量与分析

袁佳伟1, 宋庆增1, 王雪纯1, 姜文超2, 金光浩1   

  1. 1. 天津工业大学 计算机科学与技术学院, 天津 300387;
    2. 广东工业大学 计算机学院, 广州 510006
  • 收稿日期:2019-10-04 修回日期:2020-03-10 出版日期:2021-02-15 发布日期:2020-03-20
  • 作者简介:袁佳伟(1996-),男,硕士研究生,主研方向为深度学习;宋庆增,副教授、博士;王雪纯,硕士研究生;姜文超、金光浩(通信作者),讲师、博士。
  • 基金资助:
    广东省科技计划项目(2017B010124001,2017B090901005)。

Performance and Power Consumption Measurement and Analysis of Edge Computing Devices

YUAN Jiawei1, SONG Qingzeng1, WANG Xuechun1, JIANG Wenchao2, JIN Guanghao1   

  1. 1. School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China;
    2. School of Computer, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-10-04 Revised:2020-03-10 Online:2021-02-15 Published:2020-03-20

摘要: 为解决将数据传回服务器端计算时带来的延迟问题,需将神经网络结构进行调整后部署在边缘计算设备上,但当前对边缘设备性能功耗的测量不够全面。为分析和评测边缘计算设备EDGE TPU计算板的性能与功耗,采用神经网络模型和Roofline模型测量其性能,利用外置功耗测量设备测量其功耗计算性能功耗比。实验结果表明,EDGE TPU计算板能以较快的速度量化神经网络模型,执行速度与能耗节省均优于TX2和NANO,根据TX2的Roofline模型对VGG 16网络进行优化后,其在TX2上的运行速度达到原来的8倍左右。

关键词: 边缘计算, EDGE TPU计算板, 图形处理单元, Roofline模型, 现场可编程逻辑门阵列

Abstract: In order to solve the computing delay caused by transmitting data back to server-side,the neural network structure is needed to be adjusted and deployed on edge computing devices.However,the current measurement of the performance and power consumption of edge devices is not comprehensive.To analyze and evaluate the performance and power consumption of the latest edge computing device,EDGE TPU computing board,neural network models are used to analyze and measure its performance based on the Roofline model.An external power consumption measurement device is used to measure its power consumption and calculate its performance-to-power ratio.Experimental results show that the EDGE TPU computing board can execute the quantized neural network at a very high speed.The execution speed and energy consumption of the EDGE TPU computing board are both better than those of TX2 and NANO.And the VGG 16 network is optimized based on the Roofline model of TX2.The improved model runs about 8 times as fast as the original model on TX2.

Key words: edge computing, EDGE TPU computing board, Graphics Processing Unit(GPU), Roofline model, Field Programmable Gate Array(FPGA)

中图分类号: