[1] Kaspersky Lab.Digital dangerscape:kaspersky lab spotlights cybersecurity trends in the middle east,turkey and africa[EB/OL].[2019-09-10].https://me-en.kaspersky.com/about/press-releases/2019_digital-dangerscape-kaspersky-lab-spotlights-cybersecurity-trends-in-the-middle-east-turkey-and-africa. [2] FERRAND O.How to detect the Cuckoo sandbox and to strengthen it?[J].Journal of Computer Virology and Hacking Techniques,2015,11(9):51-58. [3] ZHANG Jinglian,PENG Yanbing.Research on malware code classification based on features fusion[J].Computer Engineering,2019,45(8):281-286.(in Chinese)张景莲,彭艳兵.基于特征融合的恶意代码分类研究[J].计算机工程,2019,45(8):281-286. [4] SANTOS I,BREZO F,UGARTE-PEDRERO X,et al.Opcode sequences as representation of executables for data-mining-based unknown malware detection[J].Information Sciences,2013,231(5):64-82. [5] BOUJNOUNI E M,JEDRA M,ZAHID N.New malware detection framework based on n-grams and support vector domain description[C]//Proceedings of 2015 International Conference on Information Assurance and Security.Washington D.C.,USA:IEEE Press,2015:123-128. [6] ERDENE B M,PARK H,LI H,et al.Entropy analysis to classify unknown packing algorithms for malware detection[J].International Journal of Information Security,2017,16(3):227-248. [7] ZENG Yaqin,ZHANG Linlin,ZHANG Ruonan,et al.Malware family classification model based on MobileNet[J].Computer Engineering,2020,46(4):162-168.(in Chinese)曾娅琴,张琳琳,张若楠,等.基于MobileNet的恶意软件家族分类模型[J].计算机工程,2020,46(4):162-168. [8] WANG Bo,CAI Honghao,SU Yang.Classification of malicious code variants based on VGG net[EB/OL].[2019-09-10].http://kns.cnki.net/kcms/detail/51.1307.TP.20190924.1107.006.html.(in Chinese)王博,蔡弘昊,苏旸.基于VGG网络的恶意代码变种分类[EB/OL].[2019-09-10].http://kns.cnki.net/kcms/detail/51.1307.TP.20190924.1107.006.html. [9] SPINELLIS D.Reliable identification of bounded-length viruses is NP-complete[J].IEEE Transactions on Information Theory,2003,49(1):280-284. [10] ANDERSON B,QUIST D,NEIL J,et al.Graph-based malware detection using dynamic analysis[J].Journal in Computer Virology,2011,7(4):247-258. [11] PAI S,TROIA D F,VISAGGIO C A,et al.Clustering for malware classification[J].Journal of Computer Virology and Hacking Techniques,2017,13(2):95-107. [12] BEKERMAN D,SHAPIRA B,ROKACH L,et al.Unknown malware detection using network traffic classification[C]//Proceedings of 2015 IEEE Conference on Communications and Network Security.Washington D.C.,USA:IEEE Press,2015:134-142. [13] WANG Wei,ZHU Ming,ZENG Xuewen,et al.Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of 2017 International Conference on Information Networking.Washington D.C.,USA:IEEE Press,2017:712-717. [14] WANG Qian,SHU Hui,LI Yang,et al.Malicious code behavior analysis based on DynamoRIO[J].Computer Engineering,2011,37(18):139-141.(in Chinese)王乾,舒辉,李洋,等.基于DynamoRIO的恶意代码行为分析[J].计算机工程,2011,37(18):139-141. [15] GOLDBERG Y,LEVY O.Word2vec explained:deriving Mikolovet al.'s negative-sampling word-embedding method[EB/OL].[2019-09-10].https://www.oalib.com/paper/4043543#.YBWpctfSmuw. [16] MIKOLOV T,YIH W,ZWEIG G.Linguistic regularities in continuous space word representations[C]//Proceedings of 2013 Conference of the North American Chapter of the Association for Computational Linguistics.New York,USA:ACM Press 2013:746-751. [17] HWANG R H,PENG M C,NGUYEN V L,et al.An LSTM-based deep learning approach for classifying malicious traffic at the packet level[J].Applied Sciences,2019,9(16):3414-3416. [18] WANG Baozong,LIU Yongshan,SHI Yu.Constrained relationship-based RNN queries algorithm in two-dimension space[J].Computer Engineering,2008,34(16):69-71.(in Chinese)王宝宗,刘永山,时玉.二维空间中基于约束关系的RNN查询算法[J].计算机工程,2008,34(16):69-71. [19] GERS F A,SCHMIDHUBER J,CUMMINS F.Learning to forget:continual prediction with LSTM[J].Neural Computation,1999,12(10):2451-2471. [20] CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2019-09-10].https://www.researchgate.net/publication/269416998_Empirical_Evaluation_of_Gated_Recurrent_Neural_Networks_on_Sequence_Modeling. [21] FU Rui,ZHANG Zuo,LI Li.Using LSTM and GRU neural network methods for traffic flow prediction[C]//Proceedings of 2016 Youth Academic Annual Conference of Chinese Association of Automation.Washington D.C.,USA:IEEE Press,2016:324-328. [22] KETKAR N.Deep learning with python[M].Berlin,Germany:Springer,2017. |