[1] STIAWAN D, IDRIS M Y, ABDULLAH A H, et al. Cyber-attack penetration test and vulnerability analysis[J]. International Journal of Online Engineering, 2017, 13(1):125-134. [2] SCHNEIDER D, FRAUNHOLZ D, KROHMER D. A qualitative empirical analysis of human post-exploitation behavior[EB/OL].[2023-04-11]. https://arxiv.org/abs/2101.02102. [3] CAPABILITIES C. Cyber capabilities and national power:a net assessment[M]. London, UK:The International Institute for Strategic Studies, 2021. [4] SHARAFALDIN I, HABIBI LASHKARI A, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy. Funchal, Portugal:ScitePress, 2018:108-116. [5] MADDALA S, PATIL S. Agentless automation model for post exploitation penetration testing[C]//Proceedings of International Conference on Intelligent Computing, Information and Control Systems. Berlin, Germany:Springer, 2020:529-539. [6] MAEDA R, MIMURA M. Automating post-exploitation with deep reinforcement learning[J]. Computers & Security, 2021, 100:102108. [7] 王硕. 面向多阶段渗透攻击的网络欺骗防御方法研究[D]. 郑州:战略支援部队信息工程大学, 2020. WANG S. Research on deception-based cyber defense against multi-stage penetration attack[D].Zhengzhou:Information Engineering University, 2020. (in Chinese) [8] 陈晋音, 胡书隆, 邢长友, 等. 面向智能渗透攻击的欺骗防御方法[J]. 通信学报, 2022, 43(10):106-120. CHEN J Y, HU S L, XING C Y, et al. Deception defense method against intelligent penetration attack[J]. Journal on Communications, 2022, 43(10):106-120.(in Chinese) [9] YU T X, XIN Y, ZHU H L, et al. Network penetration intrusion prediction based on attention Seq2Seq model[J]. Security and Communication Networks, 2022(May.31):6012232. [10] SALMAN O, ELHAJJ I H, CHEHAB A, et al. A machine learning based framework for IoT device identification and abnormal traffic detection[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3):37-43. [11] SHAHHOSSEINI M, MASHAYEKHI H, REZVANI M. A deep learning approach for botnet detection using raw network traffic data[J]. Journal of Network and Systems Management, 2022, 30(3):44-51. [12] 邹福泰, 俞汤达, 许文亮. 基于隐马尔可夫模型的加密恶意流量检测[J]. 软件学报, 2022, 33(7):2683-2698. ZOU F T, YU T D, XU W L. Encrypted malicious traffic detection based on hidden Markov model[J]. Journal of Software, 2022, 33(7):2683-2698.(in Chinese) [13] 蒋彤彤, 尹魏昕, 蔡冰, 等. 基于层次时空特征与多头注意力的恶意加密流量识别[J]. 计算机工程, 2021, 47(7):101-108. JIANG T T, YIN W X, CAI B, et al. Encrypted malicious traffic identification based on hierarchical spatiotemporal feature and multi-head attention[J]. Computer Engineering, 2021, 47(7):101-108.(in Chinese) [14] NARTENI S, VACCARI I, MONGELLI M, et al. Evaluating the possibility to perpetrate tunneling attacks exploiting short-message-service[J]. Journal of Internet Services & Information Security, 2021, 11(3):30-46. [15] ZAHARIA M, XIN R S, WENDELL P, et al. Apache spark[J]. Communications of the ACM, 2016, 59(11):56-65. [16] Brad. Malware-traffic-analysis.net[EB/OL].[2023-04-11]. https://www.malware-traffic-analysis.net/. [17] SHIRAVI A, SHIRAVI H, TAVALLAEE M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers & Security, 2012, 31(3):357-374. [18] GARCÍA S, GRILL M, STIBOREK J, et al. An empirical comparison of botnet detection methods[J]. Computers & Security, 2014, 45:100-123. [19] BANSAL S, BANSAL N. Scapy-a Python tool for security testing[J]. Journal of Computer Science & Systems Biology, 2015, 8(3):140. [20] 凌玥, 刘玉岭, 姜波, 等. 基于双层异质集成学习器的入侵检测方法[J]. 信息安全学报, 2021, 6(3):16-28. LING Y, LIU Y L, JIANG B, et al. Intrusion detection method based on double-layer heterogeneous ensemble learner[J]. Journal of Cyber Security, 2021, 6(3):16-28.(in Chinese) [21] SWAMI A, JAIN R. Scikit-learn:machine learning in Python[J]. Journal of Machine Learning Research, 2013, 12(10):2825-2830. [22] SAHOO K S, TRIPATHY B K, NAIK K, et al. An evolutionary SVM model for DDOS attack detection in software defined networks[J]. IEEE Access, 2020, 8:132502-132513. [23] MANCHALA Y, NAYAK J, BEHERA H S. Detection of malicious traffic in IoMT environment using intelligent XGBoost approach[C]//Proceedings of the OPJU International Technology Conference on Emerging Technologies for Sustainable Development. Washington D. C., USA:IEEE Press, 2023:1-6. [24] DAI R, GAO C, LANG B, et al. SSL malicious traffic detection based on multi-view features[C]//Proceedings of the 9th International Conference on Communication and Network Security. New York, USA:ACM Press, 2019:40-46. [25] GAO M H, MA L, LIU H, et al. Malicious network traffic detection based on deep neural networks and association analysis[J]. Sensors, 2020, 20(5):1452-1459. [26] LUO W, LIU Z H, ZHAO R, et al. Malicious HTTPS traffic classification algorithm based on DCGAN1D-CNN[C]//Proceedings of IEEE Conference on Telecommunications, Optics and Computer Science. Washington D. C., USA:IEEE Press, 2021:20-25. [27] YIN F. Identification and detection of malicious traffic in communication networks with a deep learning algorithm[J]. International Journal of Network Security, 2022, 24(4):727-732. [28] LI Y M, XU Y Y, CAO Y K, et al. One-class LSTM network for anomalous network traffic detection[J]. Applied Sciences, 2022, 12(10):5051-5053. [29] HALBOUNI A, GUNAWAN T S, HABAEBI M H, et al. CNN-LSTM:hybrid deep neural network for network intrusion detection system[J]. IEEE Access, 2022, 10:99837-99849. |