[1] GOLDWASSER S,KALAI Y T,ROTHBLUM N G.Delegating computation:interactive proofs for muggles[C]//Proceedings of the40thAnnual ACM Symposium on Theory of Computing.New York,USA:ACM Press,2015:1-27. [2] GOLDWASSER S,MICALI S,RACKOFF C.The knowledge complexity of interactive proof systems[J].SIAM Journal on Computing,1989,18(1):186-208. [3] BABAI L.Trading group theory for randomness[C]//Proceedings of the 17th Annual ACM Symposium on Theory of Computing.New York,USA:ACM Press,1985:421-429. [4] SHAMIR A.IP=PSPACE[C]//Proceedings of Foundations of Computer Science.Washington D.C.,USA:IEEE Press,1990:11-15. [5] ARORA S,SAFRA S.Probabilistic checking of proofs[J].Journal of the ACM,1998,45(1):70-122. [6] CHUNG K M,KALAI Y,VADHAN S.Improved delegation of computation using fully homomorphic encryption[C]//Proceedings of CRYPTO'10.Berlin,Germany:Springer,2010:483-501. [7] SMITH S W,WEINGART S.Building a high performance,programmable secure coprocessor[J].Computer Networks,1999,31(8):831-860. [8] GENTRY C.A fully homomorphic encryption scheme[EB/OL].[2019-10-15].https://search.proquest.com/docview/305003863. [9] GENTRY C.Fully homomorphic encryption using ideal lattices[C]//Proceedings of the 41st Annual ACM Symposium on Theory of Computing.New York,USA:ACM Press,2009:169-178. [10] ANDREW C Y.Protocols for secure computations[C]//Proceedings of the23rdAnnual Symposium on Foundations of Computer Science.Washington D.C.,USA:IEEE Press,1982:160-164. [11] BARBOSA M,FARSHIM P.Delegatable homomorphic encryption with applications to secure outsourcing ofcomputation[C]//Proceedings of CT-RSA 2012.Berlin,Germany:Springer,2012:296-312. [12] DODIS Y,HALEVI S,RABIN T.A cryptographic solution to a game theoretic problem[C]//Proceedingsof CRYPTO'00.Berlin,Germany:Springer,2000:112-130. [13] HALPERN J,TEAGUE V.Rational secret sharing and multiparty computation[C]//Proceedings of the 36th Annual ACM Symposium on Theory of Computing.New York,USA:ACM Press,2004:623-632. [14] TIAN Youliang,PENG Changgen,LIN Dongdai,et al.Bayesian mechanism for rational secret sharing scheme[J].Science China Information Sciences,2015,58(5):1-13. [15] TIAN Youliang,MA Jianfeng,PENG Changgen,et al.A rational framework for secure communication[J].Information Sciences,2013,250(11):215-226. [16] BUTTYÁN L,JEAN-PIERRE H.Rational exchange-a formal model based on game theory[C]//Proceedings of the 2nd International Workshop on Electronic Commerce.Berlin,Germany:Springer,2001:114-126. [17] AZAR P D,MICALI S.Rational proofs[EB/OL].[2019-10-15].http://dspace.mit.edu/handle/1721.1/72431. [18] TIAN Youliang,MA Jianfeng,PENG Changgen,et al.Game theoretic analysis for the secret sharing scheme[J].Acta Electronica Sinica,2011,39(12):2790-2795.(in Chinese)田有亮,马建峰,彭长根,等.秘密共享体制的博弈论分析[J].电子学报,2011,39(12):2790-2795. [19] GUO S,HUBACEK P,ROSEN A,et al.Rational arguments:single round delegation with sublinear verification[C]//Proceedings of Conference on Innovations in Theoretical Computer Science.New York,USA:ACM Press,2014:523-540. [20] LI Qiuxian,TIAN Youliang,WANG Zan.Rational delegation computation protocol based on fully homomorphic encryption[J].Acta Electronica Sinica,2019,47(2):216-220.(in Chinese)李秋贤,田有亮,王缵.基于全同态加密的理性委托计算协议[J].电子学报,2019,47(2):216-220. [21] CAI Xiaoqing,DENG Yao,ZHANG Liang,et al.The principle and core technology of blockchain[J].Chinese Journal of Computers,2019,42(11):21-28.(in Chinese)蔡晓晴,邓尧,张亮,等.区块链原理及其核心技术[J].计算机学报,2019,42(11):21-28. |